FaSRnet: a feature and semantics refinement network for human pose estimation

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuanhong Zhong, Qianfeng Xu, Daidi Zhong, Xun Yang, Shanshan Wang
{"title":"FaSRnet: a feature and semantics refinement network for human pose estimation","authors":"Yuanhong Zhong, Qianfeng Xu, Daidi Zhong, Xun Yang, Shanshan Wang","doi":"10.1631/fitee.2200639","DOIUrl":null,"url":null,"abstract":"<p>Due to factors such as motion blur, video out-of-focus, and occlusion, multi-frame human pose estimation is a challenging task. Exploiting temporal consistency between consecutive frames is an efficient approach for addressing this issue. Currently, most methods explore temporal consistency through refinements of the final heatmaps. The heatmaps contain the semantics information of key points, and can improve the detection quality to a certain extent. However, they are generated by features, and feature-level refinements are rarely considered. In this paper, we propose a human pose estimation framework with refinements at the feature and semantics levels. We align auxiliary features with the features of the current frame to reduce the loss caused by different feature distributions. An attention mechanism is then used to fuse auxiliary features with current features. In terms of semantics, we use the difference information between adjacent heatmaps as auxiliary features to refine the current heatmaps. The method is validated on the large-scale benchmark datasets PoseTrack2017 and PoseTrack2018, and the results demonstrate the effectiveness of our method.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"13 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200639","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to factors such as motion blur, video out-of-focus, and occlusion, multi-frame human pose estimation is a challenging task. Exploiting temporal consistency between consecutive frames is an efficient approach for addressing this issue. Currently, most methods explore temporal consistency through refinements of the final heatmaps. The heatmaps contain the semantics information of key points, and can improve the detection quality to a certain extent. However, they are generated by features, and feature-level refinements are rarely considered. In this paper, we propose a human pose estimation framework with refinements at the feature and semantics levels. We align auxiliary features with the features of the current frame to reduce the loss caused by different feature distributions. An attention mechanism is then used to fuse auxiliary features with current features. In terms of semantics, we use the difference information between adjacent heatmaps as auxiliary features to refine the current heatmaps. The method is validated on the large-scale benchmark datasets PoseTrack2017 and PoseTrack2018, and the results demonstrate the effectiveness of our method.

FaSRnet:用于人体姿态估计的特征和语义细化网络
由于运动模糊、视频失焦和遮挡等因素,多帧人体姿态估计是一项具有挑战性的任务。利用连续帧之间的时间一致性是解决这一问题的有效方法。目前,大多数方法都是通过完善最终热图来探索时间一致性。热图包含关键点的语义信息,可以在一定程度上提高检测质量。然而,热图是由特征生成的,很少考虑特征级的细化。在本文中,我们提出了一种在特征和语义层面进行细化的人体姿态估计框架。我们将辅助特征与当前帧的特征对齐,以减少不同特征分布造成的损失。然后使用注意力机制将辅助特征与当前特征进行融合。在语义方面,我们使用相邻热图之间的差异信息作为辅助特征来完善当前热图。该方法在大规模基准数据集 PoseTrack2017 和 PoseTrack2018 上进行了验证,结果证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信