Strong Duality Data of Type A and Extended T-Systems

IF 0.4 3区 数学 Q4 MATHEMATICS
Katsuyuki Naoi
{"title":"Strong Duality Data of Type A and Extended T-Systems","authors":"Katsuyuki Naoi","doi":"10.1007/s00031-024-09860-5","DOIUrl":null,"url":null,"abstract":"<p>The extended <i>T</i>-systems are a number of relations in the Grothendieck ring of the category of finite-dimensional modules over the quantum affine algebras of types <span>\\(A_n^{(1)}\\)</span> and <span>\\(B_n^{(1)}\\)</span>, introduced by Mukhin and Young as a generalization of the <i>T</i>-systems. In this paper we establish the extended <i>T</i>-systems for more general modules, which are constructed from an arbitrary strong duality datum of type <i>A</i>. Our approach does not use the theory of <i>q</i>-characters, and so also provides a new proof to the original Mukhin–Young’s extended <i>T</i>-systems.</p>","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":"21 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09860-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The extended T-systems are a number of relations in the Grothendieck ring of the category of finite-dimensional modules over the quantum affine algebras of types \(A_n^{(1)}\) and \(B_n^{(1)}\), introduced by Mukhin and Young as a generalization of the T-systems. In this paper we establish the extended T-systems for more general modules, which are constructed from an arbitrary strong duality datum of type A. Our approach does not use the theory of q-characters, and so also provides a new proof to the original Mukhin–Young’s extended T-systems.

A 类和扩展 T 系统的强对偶数据
扩展 T 系统是由 Mukhin 和 Young 作为 T 系统的广义化而引入的量子仿射代数类型 \(A_n^{(1)}\) 和 \(B_n^{(1)}\) 上的有限维模块类别的格罗内狄克环中的一些关系。我们的方法不使用 q 字符理论,因此也为最初的穆欣-杨的扩展 T 系统提供了新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transformation Groups
Transformation Groups 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
100
审稿时长
9 months
期刊介绍: Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信