Behavior of convex integrand at a d-apex of its Wulff shape and approximation of spherical bodies of constant width

Pub Date : 2024-05-11 DOI:10.1007/s00010-024-01079-9
Huhe Han
{"title":"Behavior of convex integrand at a d-apex of its Wulff shape and approximation of spherical bodies of constant width","authors":"Huhe Han","doi":"10.1007/s00010-024-01079-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\gamma : S^n\\rightarrow \\mathbb {R}_+\\)</span> be a convex integrand and <span>\\(\\mathcal {W}_\\gamma \\)</span> be the Wulff shape of <span>\\(\\gamma \\)</span>. A d-apex point naturally arises in a non-smooth Wulff shape, in particular, as a vertex of a convex polytope. In this paper, we study the behavior of the convex integrand at a d-apex point of its Wulff shape. We prove that <span>\\(\\gamma (P)\\)</span> is locally maximum, and <span>\\(\\mathbb {R}_+ P\\cap \\partial \\mathcal {W}_\\gamma \\)</span> is a d-apex point of <span>\\(\\mathcal {W}_\\gamma \\)</span> if and only if the graph of <span>\\(\\gamma \\)</span> around the d-apex point is a piece of a sphere with center <span>\\(\\frac{1}{2}\\gamma (P)P\\)</span> and radius <span>\\(\\frac{1}{2}\\gamma (P)\\)</span>. As an application of the proof of this result, we prove that for any spherical convex body <i>C</i> of constant width <span>\\(\\tau &gt;\\pi /2\\)</span>, there exists a sequence <span>\\(\\{C_i\\}_{i=1}^\\infty \\)</span> of convex bodies of constant width <span>\\(\\tau \\)</span>, whose boundaries consist only of arcs of circles of radius <span>\\(\\tau -\\frac{\\pi }{2}\\)</span> and great circle arcs such that <span>\\(\\lim _{i\\rightarrow \\infty }C_i=C\\)</span> with respect to the Hausdorff distance.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01079-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\gamma : S^n\rightarrow \mathbb {R}_+\) be a convex integrand and \(\mathcal {W}_\gamma \) be the Wulff shape of \(\gamma \). A d-apex point naturally arises in a non-smooth Wulff shape, in particular, as a vertex of a convex polytope. In this paper, we study the behavior of the convex integrand at a d-apex point of its Wulff shape. We prove that \(\gamma (P)\) is locally maximum, and \(\mathbb {R}_+ P\cap \partial \mathcal {W}_\gamma \) is a d-apex point of \(\mathcal {W}_\gamma \) if and only if the graph of \(\gamma \) around the d-apex point is a piece of a sphere with center \(\frac{1}{2}\gamma (P)P\) and radius \(\frac{1}{2}\gamma (P)\). As an application of the proof of this result, we prove that for any spherical convex body C of constant width \(\tau >\pi /2\), there exists a sequence \(\{C_i\}_{i=1}^\infty \) of convex bodies of constant width \(\tau \), whose boundaries consist only of arcs of circles of radius \(\tau -\frac{\pi }{2}\) and great circle arcs such that \(\lim _{i\rightarrow \infty }C_i=C\) with respect to the Hausdorff distance.

Abstract Image

分享
查看原文
凸积分在其 Wulff 形的 d-apex 处的行为和恒定宽度球体的近似值
让 \(\gamma : S^n\rightarrow \mathbb {R}_+\) 是一个凸积分,并且 \(\mathcal {W}_\gamma \) 是 \(\gamma \) 的 Wulff 形状。d-apex 点自然出现在非光滑的 Wulff 形中,特别是作为凸多胞形的顶点。本文研究了凸积分在其 Wulff 形状的 d-apex 点处的行为。我们证明了 \(\gamma (P)\) 是局部最大值、并且当且仅当 \(\gamma \) 在d-顶点周围的图形是一块曲面时,\(\mathbb {R}_+ P\cap \partial \mathcal {W}_\gamma \)是\(\mathcal {W}_\gamma \)的d-顶点。顶点的图形是以 \(\frac{1}{2}\gamma (P)P\) 为圆心、以 \(\frac{1}{2}\gamma (P)P\) 为半径的球面的一部分。作为对这一结果证明的应用,我们证明对于任何球形凸体 C,其宽度不变(\tau >;\其边界仅由半径为 \(\tau -\frac\pi }{2}\) 的圆弧和大圆弧组成,使得 \(\lim _{i\rightarrow \infty }C_i=C\) 关于 Hausdorff 距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信