{"title":"Behavior of convex integrand at a d-apex of its Wulff shape and approximation of spherical bodies of constant width","authors":"Huhe Han","doi":"10.1007/s00010-024-01079-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\gamma : S^n\\rightarrow \\mathbb {R}_+\\)</span> be a convex integrand and <span>\\(\\mathcal {W}_\\gamma \\)</span> be the Wulff shape of <span>\\(\\gamma \\)</span>. A d-apex point naturally arises in a non-smooth Wulff shape, in particular, as a vertex of a convex polytope. In this paper, we study the behavior of the convex integrand at a d-apex point of its Wulff shape. We prove that <span>\\(\\gamma (P)\\)</span> is locally maximum, and <span>\\(\\mathbb {R}_+ P\\cap \\partial \\mathcal {W}_\\gamma \\)</span> is a d-apex point of <span>\\(\\mathcal {W}_\\gamma \\)</span> if and only if the graph of <span>\\(\\gamma \\)</span> around the d-apex point is a piece of a sphere with center <span>\\(\\frac{1}{2}\\gamma (P)P\\)</span> and radius <span>\\(\\frac{1}{2}\\gamma (P)\\)</span>. As an application of the proof of this result, we prove that for any spherical convex body <i>C</i> of constant width <span>\\(\\tau >\\pi /2\\)</span>, there exists a sequence <span>\\(\\{C_i\\}_{i=1}^\\infty \\)</span> of convex bodies of constant width <span>\\(\\tau \\)</span>, whose boundaries consist only of arcs of circles of radius <span>\\(\\tau -\\frac{\\pi }{2}\\)</span> and great circle arcs such that <span>\\(\\lim _{i\\rightarrow \\infty }C_i=C\\)</span> with respect to the Hausdorff distance.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01079-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\gamma : S^n\rightarrow \mathbb {R}_+\) be a convex integrand and \(\mathcal {W}_\gamma \) be the Wulff shape of \(\gamma \). A d-apex point naturally arises in a non-smooth Wulff shape, in particular, as a vertex of a convex polytope. In this paper, we study the behavior of the convex integrand at a d-apex point of its Wulff shape. We prove that \(\gamma (P)\) is locally maximum, and \(\mathbb {R}_+ P\cap \partial \mathcal {W}_\gamma \) is a d-apex point of \(\mathcal {W}_\gamma \) if and only if the graph of \(\gamma \) around the d-apex point is a piece of a sphere with center \(\frac{1}{2}\gamma (P)P\) and radius \(\frac{1}{2}\gamma (P)\). As an application of the proof of this result, we prove that for any spherical convex body C of constant width \(\tau >\pi /2\), there exists a sequence \(\{C_i\}_{i=1}^\infty \) of convex bodies of constant width \(\tau \), whose boundaries consist only of arcs of circles of radius \(\tau -\frac{\pi }{2}\) and great circle arcs such that \(\lim _{i\rightarrow \infty }C_i=C\) with respect to the Hausdorff distance.