Banach spaces of sequences arising from infinite matrices

IF 1.2 3区 数学 Q1 MATHEMATICS
A. Bërdëllima, N. L. Braha
{"title":"Banach spaces of sequences arising from infinite matrices","authors":"A. Bërdëllima,&nbsp;N. L. Braha","doi":"10.1007/s43034-024-00356-7","DOIUrl":null,"url":null,"abstract":"<div><p>Given an infinite matrix <span>\\(M=(m_{nk})\\)</span>, we study a family of sequence spaces <span>\\(\\ell _M^p\\)</span> associated with it. When equipped with a suitable norm <span>\\(\\Vert \\cdot \\Vert _{M,p}\\)</span>, we prove some basic properties of the Banach spaces of sequences <span>\\((\\ell _M^p,\\Vert \\cdot \\Vert _{M,p})\\)</span>. In particular, we show that such spaces are separable and strictly/uniformly convex for a considerably large class of infinite matrices <i>M</i> for all <span>\\(p&gt;1\\)</span>. A special attention is given to the identification of the dual space <span>\\((\\ell _M^p )^*\\)</span>. Building on the earlier works of Bennett and Jägers, we extend and apply some classical factorization results to the sequence spaces <span>\\(\\ell _M^p\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00356-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an infinite matrix \(M=(m_{nk})\), we study a family of sequence spaces \(\ell _M^p\) associated with it. When equipped with a suitable norm \(\Vert \cdot \Vert _{M,p}\), we prove some basic properties of the Banach spaces of sequences \((\ell _M^p,\Vert \cdot \Vert _{M,p})\). In particular, we show that such spaces are separable and strictly/uniformly convex for a considerably large class of infinite matrices M for all \(p>1\). A special attention is given to the identification of the dual space \((\ell _M^p )^*\). Building on the earlier works of Bennett and Jägers, we extend and apply some classical factorization results to the sequence spaces \(\ell _M^p\).

由无限矩阵产生的序列的巴拿赫空间
给定一个无穷矩阵 (M=(m_{nk})\),我们研究与之相关的序列空间家族 (\ell _M^p\)。当配备了合适的规范 \(\Vert \cdot \Vert _{M,p}\) 时,我们证明了巴拿赫序列空间 \((\ell _M^p,\Vert \cdot \Vert _{M,p})\) 的一些基本性质。特别是,我们证明了对于相当大的一类无穷矩阵 M 而言,这些空间对于所有 \(p>1\) 都是可分的和严格/均匀凸的。我们特别关注了对偶空间 \((\ell _M^p )^*\) 的识别。在贝内特(Bennett)和耶格尔斯(Jägers)早期著作的基础上,我们将一些经典的因式分解结果扩展并应用于序列空间 \(\ell_M^p\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信