Affine RSK Correspondence and Crystals of Level Zero Extremal Weight Modules

Pub Date : 2024-05-11 DOI:10.1007/s00031-024-09857-0
Jae-Hoon Kwon, Hyunse Lee
{"title":"Affine RSK Correspondence and Crystals of Level Zero Extremal Weight Modules","authors":"Jae-Hoon Kwon, Hyunse Lee","doi":"10.1007/s00031-024-09857-0","DOIUrl":null,"url":null,"abstract":"<p>We give an affine analogue of the Robinson-Schensted-Knuth (RSK) correspondence, which generalizes the affine Robinson-Schensted correspondence by Chmutov-Pylyavskyy-Yudovina. The affine RSK map sends a generalized affine permutation of period (<i>m</i>, <i>n</i>) to a pair of tableaux (<i>P</i>, <i>Q</i>) of the same shape, where <i>P</i> belongs to a tensor product of level one perfect Kirillov-Reshetikhin crystals of type <span>\\(A_{m-1}^{(1)}\\)</span>, and <i>Q</i> belongs to a crystal of extremal weight module of type <span>\\(A_{n-1}^{(1)}\\)</span> when <span>\\(m,n\\geqslant 2\\)</span>. We consider two affine crystal structures of types <span>\\(A_{m-1}^{(1)}\\)</span> and <span>\\(A_{n-1}^{(1)}\\)</span> on the set of generalized affine permutations, and show that the affine RSK map preserves the crystal equivalence. We also give a dual affine Robison-Schensted-Knuth correspondence.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09857-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give an affine analogue of the Robinson-Schensted-Knuth (RSK) correspondence, which generalizes the affine Robinson-Schensted correspondence by Chmutov-Pylyavskyy-Yudovina. The affine RSK map sends a generalized affine permutation of period (mn) to a pair of tableaux (PQ) of the same shape, where P belongs to a tensor product of level one perfect Kirillov-Reshetikhin crystals of type \(A_{m-1}^{(1)}\), and Q belongs to a crystal of extremal weight module of type \(A_{n-1}^{(1)}\) when \(m,n\geqslant 2\). We consider two affine crystal structures of types \(A_{m-1}^{(1)}\) and \(A_{n-1}^{(1)}\) on the set of generalized affine permutations, and show that the affine RSK map preserves the crystal equivalence. We also give a dual affine Robison-Schensted-Knuth correspondence.

Abstract Image

分享
查看原文
亲和 RSK 对应和零级极值权重模块的晶体
我们给出了罗宾逊-申斯泰德-克努斯(RSK)对应关系的仿射类比,它概括了奇穆托夫-皮亚夫斯基-尤多维那(Chmutov-Pylyavskyy-Yudovina)的仿射罗宾逊-申斯泰德对应关系。仿射 RSK 映射将周期为(m, n)的广义仿射置换发送到一对相同形状的表格(P, Q),其中 P 属于 \(A_{m-1}^{(1)}\) 类型的一级完美基里洛夫-雷谢提金晶体的张量积,而 Q 属于 \(m,ngeqslant 2\) 时 \(A_{n-1}^{(1)}\) 类型的极值权重模块晶体。我们考虑了广义仿射置换集合上类型为 (A_{m-1}^{(1)}\)和 (A_{n-1}^{(1)}\)的两个仿射晶体结构,并证明仿射 RSK 映射保留了晶体等价性。我们还给出了对偶仿射罗比森-申斯特-克努斯对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信