On the $K$-theory of $\mathbf{Z}/p^n$

Benjamin Antieau, Achim Krause, Thomas Nikolaus
{"title":"On the $K$-theory of $\\mathbf{Z}/p^n$","authors":"Benjamin Antieau, Achim Krause, Thomas Nikolaus","doi":"arxiv-2405.04329","DOIUrl":null,"url":null,"abstract":"We give an explicit algebraic description, based on prismatic cohomology, of\nthe algebraic K-groups of rings of the form $O_K/I$ where $K$ is a p-adic field\nand $I$ is a non-trivial ideal in the ring of integers $O_K$; this class\nincludes the rings $\\mathbf{Z}/p^n$ where $p$ is a prime. The algebraic description allows us to describe a practical algorithm to\ncompute individual K-groups as well as to obtain several theoretical results:\nthe vanishing of the even K-groups in high degrees, the determination of the\norders of the odd K-groups in high degrees, and the degree of nilpotence of\n$v_1$ acting on the mod $p$ syntomic cohomology of $\\mathbf{Z}/p^n$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give an explicit algebraic description, based on prismatic cohomology, of the algebraic K-groups of rings of the form $O_K/I$ where $K$ is a p-adic field and $I$ is a non-trivial ideal in the ring of integers $O_K$; this class includes the rings $\mathbf{Z}/p^n$ where $p$ is a prime. The algebraic description allows us to describe a practical algorithm to compute individual K-groups as well as to obtain several theoretical results: the vanishing of the even K-groups in high degrees, the determination of the orders of the odd K-groups in high degrees, and the degree of nilpotence of $v_1$ acting on the mod $p$ syntomic cohomology of $\mathbf{Z}/p^n$.
关于 $\mathbf{Z}/p^n$ 的 $K$ 理论
我们基于棱柱同调,对形式为 $O_K/I$ 的环的代数 K 群给出了明确的代数描述,其中 $K$ 是 p-adic 场,$I$ 是整数环 $O_K$ 中的非三重理想;这类环包括 $\mathbf{Z}/p^n$ 环,其中 $p$ 是素数。通过代数描述,我们描述了计算单个 K 群的实用算法,并得到了几个理论结果:高度数中偶数 K 群的消失、高度数中奇数 K 群的阶的确定,以及作用于 $\mathbf{Z}/p^n$ 的 mod $p$ 合成同调上的 $v_1$ 的无穷度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信