On diagonal digraphs, Koszul algebras and triangulations of homology spheres

Sergei O. Ivanov, Lev Mukoseev
{"title":"On diagonal digraphs, Koszul algebras and triangulations of homology spheres","authors":"Sergei O. Ivanov, Lev Mukoseev","doi":"arxiv-2405.04748","DOIUrl":null,"url":null,"abstract":"We present the magnitude homology of a finite digraph $G$ as a certain\nsubquotient of its path algebra. We use this to prove that the second magnitude\nhomology group ${\\rm MH}_{2,\\ell}(G,\\mathbb{Z})$ is a free abelian group for\nany $\\ell$, and to describe its rank. This allows us to give a condition,\ndenoted by $(\\mathcal{V}_2)$, equivalent to vanishing of ${\\rm\nMH}_{2,\\ell}(G,\\mathbb{Z})$ for $\\ell>2.$ Recall that a digraph is called\ndiagonal, if its magnitude homology is concentrated in diagonal degrees. Using\nthe condition $(\\mathcal V_2),$ we show that the GLMY-fundamental group of a\ndiagonal (undirected) graph is trivial. In other words, the two-dimensional\nCW-complex obtained from a diagonal graph by attaching 2-cells to all squares\nand triangles of the graph is simply connected. We also give an interpretation\nof diagonality in terms of Koszul algebras: a digraph $G$ is diagonal if and\nonly if the distance algebra $\\sigma G$ is Koszul for any ground field; and if\nand only if $G$ satisfies $(\\mathcal{V}_2)$ and the path cochain algebra\n$\\Omega^\\bullet(G)$ is Koszul for any ground field. Besides, we show that the\npath cochain algebra $\\Omega^\\bullet(G)$ is quadratic for any $G.$ To obtain a\nsource of examples of (non-)diagonal digraphs, we study the extended Hasse\ndiagram $\\hat G_K$ of a simplicial complex $K$. For a combinatorial\ntriangulation $K$ of a piecewise-linear manifold $M,$ we express the\nnon-diagonal part of the magnitude homology of $\\hat G_K$ via the homology of\n$M$. As a corollary we obtain that, if $K$ is a combinatorial triangulation of\na closed piecewise-linear manifold $M$, then $\\hat G_K$ is diagonal if and only\nif $M$ is a homology sphere.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the magnitude homology of a finite digraph $G$ as a certain subquotient of its path algebra. We use this to prove that the second magnitude homology group ${\rm MH}_{2,\ell}(G,\mathbb{Z})$ is a free abelian group for any $\ell$, and to describe its rank. This allows us to give a condition, denoted by $(\mathcal{V}_2)$, equivalent to vanishing of ${\rm MH}_{2,\ell}(G,\mathbb{Z})$ for $\ell>2.$ Recall that a digraph is called diagonal, if its magnitude homology is concentrated in diagonal degrees. Using the condition $(\mathcal V_2),$ we show that the GLMY-fundamental group of a diagonal (undirected) graph is trivial. In other words, the two-dimensional CW-complex obtained from a diagonal graph by attaching 2-cells to all squares and triangles of the graph is simply connected. We also give an interpretation of diagonality in terms of Koszul algebras: a digraph $G$ is diagonal if and only if the distance algebra $\sigma G$ is Koszul for any ground field; and if and only if $G$ satisfies $(\mathcal{V}_2)$ and the path cochain algebra $\Omega^\bullet(G)$ is Koszul for any ground field. Besides, we show that the path cochain algebra $\Omega^\bullet(G)$ is quadratic for any $G.$ To obtain a source of examples of (non-)diagonal digraphs, we study the extended Hasse diagram $\hat G_K$ of a simplicial complex $K$. For a combinatorial triangulation $K$ of a piecewise-linear manifold $M,$ we express the non-diagonal part of the magnitude homology of $\hat G_K$ via the homology of $M$. As a corollary we obtain that, if $K$ is a combinatorial triangulation of a closed piecewise-linear manifold $M$, then $\hat G_K$ is diagonal if and only if $M$ is a homology sphere.
论对角数图、科斯祖尔代数和同调球的三角剖分
我们将有限图 $G$ 的幅同调作为其路径代数的某个次方差来表示。我们用它来证明第二个幅同调群 ${rm MH}_{2,\ell}(G,\mathbb{Z})$对于任何 $\ell$ 都是一个自由的无性群,并描述它的秩。这使得我们可以给出一个条件,用 $(\mathcal{V}_2)$ 表示,相当于 ${rmMH}_{2,\ell}(G,\mathbb{Z})$ 在 $\ell>2 时消失。利用条件 $(\mathcal V_2), $ 我们证明了对角(无向)图的 GLMY 基群是微不足道的。换句话说,通过给对角图的所有正方形和三角形附加 2 个单元,从该图得到的二维 CW 复数是简单相连的。我们还用科斯祖尔代数给出了对角性的解释:如果并且只有当距离代数 $\sigma G$ 对于任何基域都是科斯祖尔时,数图 $G$ 才是对角的;如果并且只有当 $G$ 满足 $(\mathcal{V}_2)$ 并且路径共链代数 $\Omega^\bullet(G)$ 对于任何基域都是科斯祖尔时,数图 $G$ 才是对角的。此外,我们还证明了路径共链代数$\Omega^\bullet(G)$对于任意$G都是二次的。$ 为了获得(非)对角数图的例子来源,我们研究了简单复数$K$的扩展哈希德图$\hat G_K$。对于片线性流形 $M 的组合三角 $K$,我们通过 $M$ 的同源性来表达 $\hat G_K$ 的幅同源性的对角部分。作为推论,我们得到,如果 $K$ 是封闭片线性流形 $M$ 的组合三角剖分,那么当且仅当 $M$ 是一个同调球时,$\hat G_K$ 是对角的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信