Rigidity Results for the p-Laplacian Poisson Problem with Robin Boundary Conditions

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Alba Lia Masiello, Gloria Paoli
{"title":"Rigidity Results for the p-Laplacian Poisson Problem with Robin Boundary Conditions","authors":"Alba Lia Masiello, Gloria Paoli","doi":"10.1007/s10957-024-02442-1","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span> be an open, bounded and Lipschitz set. We consider the Poisson problem for the <i>p</i>-Laplace operator associated to <span>\\(\\Omega \\)</span> with Robin boundary conditions. In this setting, we study the equality case in the Talenti-type comparison: we prove that the equality is achieved only if <span>\\(\\Omega \\)</span> is a ball and both the solution <i>u</i> and the right-hand side <i>f</i> of the Poisson equation are radial and decreasing.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"71 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02442-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Omega \subset \mathbb {R}^n\) be an open, bounded and Lipschitz set. We consider the Poisson problem for the p-Laplace operator associated to \(\Omega \) with Robin boundary conditions. In this setting, we study the equality case in the Talenti-type comparison: we prove that the equality is achieved only if \(\Omega \) is a ball and both the solution u and the right-hand side f of the Poisson equation are radial and decreasing.

带罗宾边界条件的 p 拉普拉斯泊松问题的刚性结果
让 \(\Omega \subset \mathbb {R}^n\) 是一个开放的、有界的和 Lipschitz 集。我们考虑与 Robin 边界条件相关的 p-Laplace 算子的泊松问题。在这种情况下,我们研究了 Talenti 型比较中的相等情况:我们证明只有当 \(\Omega \) 是一个球,并且泊松方程的解 u 和右边 f 都是径向递减时,相等才会实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信