Aleksandar I. Goranov, Mark W. Swinton, David A. Winkler, Jeremy L. Farrell, Sandra A. Nierzwicki-Bauer, Sasha Wagner
{"title":"Assessing the spatiotemporal variability of dissolved organic matter fluorescence composition in the Lake George, NY watershed","authors":"Aleksandar I. Goranov, Mark W. Swinton, David A. Winkler, Jeremy L. Farrell, Sandra A. Nierzwicki-Bauer, Sasha Wagner","doi":"10.1007/s10533-024-01147-x","DOIUrl":null,"url":null,"abstract":"<div><p>Lake George (LG) is a temperate, oligotrophic, medium-sized lake (114 km<sup>2</sup>) located in northeastern New York State (U.S.). Lakes are highly understudied environments where extensive dissolved organic matter (DOM) processing occurs. With this study we establish the foundation for researching the organic biogeochemistry of the LG watershed, in particular, the numerous tributaries flowing into the lake. Collected were 213 samples from 64 tributaries and 12 lake locations. Some of the tributaries had unique wastewater, agricultural, or wetland influences. We employed fluorescence spectroscopy, a common biogeochemical technique, to characterize the fluorescent DOM (FDOM) component. We developed a parallel factor analysis (PARAFAC) model for the deconvolution of FDOM data allowing to depict six underlying FDOM constituents, which varied in source and biogeochemical reactivity on spatiotemporal scales. Tributary DOM, in comparison to lake DOM, was much more aromatic, of larger molecular weight, more humic, and contained less protein-like material. The distribution of humic and protein-like PARAFAC components was impacted by land-use and wastewater influences. Supporting characterization of the chromophoric DOM (CDOM) and total DOM (on dissolved organic carbon basis) allowed differentiating the influence of wetlands, which could not be depicted by spatiotemporally assessing the variability of PARAFAC components. Temporal assessment revealed minor variabilities in tributary DOM quantity and quality except in cases of point sources such as wastewater treatment facilities. Overall, this primer study establishes baseline understanding of the baseflow levels of DOM constituents in the LG watershed, and more broadly, presents a PARAFAC model for the deconvolution of fluorescence spectra of DOM from temperate and oligotrophic lake watersheds such as LG.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 6","pages":"849 - 870"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01147-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01147-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lake George (LG) is a temperate, oligotrophic, medium-sized lake (114 km2) located in northeastern New York State (U.S.). Lakes are highly understudied environments where extensive dissolved organic matter (DOM) processing occurs. With this study we establish the foundation for researching the organic biogeochemistry of the LG watershed, in particular, the numerous tributaries flowing into the lake. Collected were 213 samples from 64 tributaries and 12 lake locations. Some of the tributaries had unique wastewater, agricultural, or wetland influences. We employed fluorescence spectroscopy, a common biogeochemical technique, to characterize the fluorescent DOM (FDOM) component. We developed a parallel factor analysis (PARAFAC) model for the deconvolution of FDOM data allowing to depict six underlying FDOM constituents, which varied in source and biogeochemical reactivity on spatiotemporal scales. Tributary DOM, in comparison to lake DOM, was much more aromatic, of larger molecular weight, more humic, and contained less protein-like material. The distribution of humic and protein-like PARAFAC components was impacted by land-use and wastewater influences. Supporting characterization of the chromophoric DOM (CDOM) and total DOM (on dissolved organic carbon basis) allowed differentiating the influence of wetlands, which could not be depicted by spatiotemporally assessing the variability of PARAFAC components. Temporal assessment revealed minor variabilities in tributary DOM quantity and quality except in cases of point sources such as wastewater treatment facilities. Overall, this primer study establishes baseline understanding of the baseflow levels of DOM constituents in the LG watershed, and more broadly, presents a PARAFAC model for the deconvolution of fluorescence spectra of DOM from temperate and oligotrophic lake watersheds such as LG.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.