Mathematica code for the topological analysis of Thom’s Catastrophes in 2 × 2 economic games

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Michael S. Harré , Adam Harris , Scott McCallum
{"title":"Mathematica code for the topological analysis of Thom’s Catastrophes in 2 × 2 economic games","authors":"Michael S. Harré ,&nbsp;Adam Harris ,&nbsp;Scott McCallum","doi":"10.1016/j.simpa.2024.100652","DOIUrl":null,"url":null,"abstract":"<div><p>René Thom’s work on topological instabilities applied new methods to questions of dynamical stability that traditionally belonged to the domain of dynamical systems theorists. Topological instability focuses on universal properties of bifurcations in systems where multiple equilibria form and disappear as a function of system parameters. However, the complete mathematical description is quite abstract and the analysis benefits from graphical intuitions. Here we provide the code, in the form of a Mathematica notebook, used in our recent Games and Economic Behaviour paper (Harriset al., 2023). It illustrates our main results providing the intuition necessary to explore the bifurcations in the formal proofs.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100652"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266596382400040X/pdfft?md5=425fa6c1649495620ca60a8e880bdffb&pid=1-s2.0-S266596382400040X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266596382400040X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

René Thom’s work on topological instabilities applied new methods to questions of dynamical stability that traditionally belonged to the domain of dynamical systems theorists. Topological instability focuses on universal properties of bifurcations in systems where multiple equilibria form and disappear as a function of system parameters. However, the complete mathematical description is quite abstract and the analysis benefits from graphical intuitions. Here we provide the code, in the form of a Mathematica notebook, used in our recent Games and Economic Behaviour paper (Harriset al., 2023). It illustrates our main results providing the intuition necessary to explore the bifurcations in the formal proofs.

2 × 2 经济博弈中托马斯灾难拓扑分析的数学代码
勒内-托姆(René Thom)的拓扑不稳定性研究将新方法应用于传统上属于动力系统理论家领域的动力稳定性问题。拓扑不稳定性侧重于系统中分岔的普遍特性,即多个平衡点随着系统参数的变化而形成和消失。然而,完整的数学描述是相当抽象的,而分析则得益于图形直观。在此,我们以 Mathematica 笔记本的形式提供我们最近的论文《游戏与经济行为》(Harriset al.)它说明了我们的主要结果,为探索正式证明中的分岔提供了必要的直观性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信