Metabolic potential of Nitrososphaera-associated clades.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Qicheng Bei, Thomas Reitz, Martin Schädler, Logan H Hodgskiss, Jingjing Peng, Beatrix Schnabel, François Buscot, Nico Eisenhauer, Christa Schleper, Anna Heintz-Buschart
{"title":"Metabolic potential of Nitrososphaera-associated clades.","authors":"Qicheng Bei, Thomas Reitz, Martin Schädler, Logan H Hodgskiss, Jingjing Peng, Beatrix Schnabel, François Buscot, Nico Eisenhauer, Christa Schleper, Anna Heintz-Buschart","doi":"10.1093/ismejo/wrae086","DOIUrl":null,"url":null,"abstract":"<p><p>Soil ammonia-oxidizing archaea (AOA) play a crucial role in converting ammonia to nitrite, thereby mobilizing reactive nitrogen species into their soluble form, with a significant impact on nitrogen losses from terrestrial soils. Yet, our knowledge regarding their diversity and functions remains limited. In this study, we reconstructed 97 high-quality AOA metagenome-assembled genomes (MAGs) from 180 soil samples collected in Central Germany during 2014-2019 summers. These MAGs were affiliated with the order Nitrososphaerales and clustered into four family-level clades (NS-α/γ/δ/ε). Among these MAGs, 75 belonged to the most abundant but least understood δ-clade. Within the δ-clade, the amoA genes in three MAGs from neutral soils showed a 99.5% similarity to the fosmid clone 54d9, which has served as representative of the δ-clade for the past two decades since even today no cultivated representatives are available. Seventy-two MAGs constituted a distinct δ sub-clade, and their abundance and expression activity were more than twice that of other MAGs in slightly acidic soils. Unlike the less abundant clades (α, γ, and ε), the δ-MAGs possessed multiple highly expressed intracellular and extracellular carbohydrate-active enzymes responsible for carbohydrate binding (CBM32) and degradation (GH5), along with highly expressed genes involved in ammonia oxidation. Together, these results suggest metabolic versatility of uncultured soil AOA and a potential mixotrophic or chemolithoheterotrophic lifestyle among 54d9-like AOA.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae086","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil ammonia-oxidizing archaea (AOA) play a crucial role in converting ammonia to nitrite, thereby mobilizing reactive nitrogen species into their soluble form, with a significant impact on nitrogen losses from terrestrial soils. Yet, our knowledge regarding their diversity and functions remains limited. In this study, we reconstructed 97 high-quality AOA metagenome-assembled genomes (MAGs) from 180 soil samples collected in Central Germany during 2014-2019 summers. These MAGs were affiliated with the order Nitrososphaerales and clustered into four family-level clades (NS-α/γ/δ/ε). Among these MAGs, 75 belonged to the most abundant but least understood δ-clade. Within the δ-clade, the amoA genes in three MAGs from neutral soils showed a 99.5% similarity to the fosmid clone 54d9, which has served as representative of the δ-clade for the past two decades since even today no cultivated representatives are available. Seventy-two MAGs constituted a distinct δ sub-clade, and their abundance and expression activity were more than twice that of other MAGs in slightly acidic soils. Unlike the less abundant clades (α, γ, and ε), the δ-MAGs possessed multiple highly expressed intracellular and extracellular carbohydrate-active enzymes responsible for carbohydrate binding (CBM32) and degradation (GH5), along with highly expressed genes involved in ammonia oxidation. Together, these results suggest metabolic versatility of uncultured soil AOA and a potential mixotrophic or chemolithoheterotrophic lifestyle among 54d9-like AOA.

亚硝基磷藻相关支系的代谢潜力。
土壤氨氧化古细菌(AOA)在将氨转化为亚硝酸盐过程中发挥着关键作用,从而将活性氮物种转化为可溶形式,对陆地土壤中的氮损失具有重要影响。然而,我们对其多样性和功能的了解仍然有限。在这项研究中,我们从 2014-2019 年夏季在德国中部采集的 180 份土壤样本中重建了 97 个高质量的 AOA 元基因组组装基因组(MAGs)。这些基因组隶属于亚硝基磷脂菌目(Nitrososphaerales,NS),并聚类为四个科级支系(NS-α/γ/δ/ε)。在这些 MAGs 中,75 个属于数量最多但最不为人所知的 δ 支系。在 δ 支系中,3 个来自中性土壤的 MAGs 的 amoA 基因与 54d9 小孢子克隆的相似度高达 99.5%,54d9 在过去 20 年中一直是 δ 支系的代表,因为即使在今天也没有栽培代表。72 个 MAGs 构成了一个独特的 δ 亚支系,它们在微酸性土壤中的丰度和表达活性是其他 MAGs 的两倍多。与含量较低的支系(α、γ 和 ε)不同,δ-MAGs 具有多种高表达的细胞内和细胞外碳水化合物活性酶,负责碳水化合物的结合(CBM32)和降解(GH5),以及参与氨氧化的高表达基因。总之,这些结果表明,未培养的土壤厌氧动物具有代谢多功能性,54d9-like厌氧动物可能具有混养或化石异养的生活方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信