David P. Tchouassi, Robinson O. Kisero, Gilbert Rotich, Christopher Dunlap, Baldwyn Torto, Ephantus J. Muturi
{"title":"Next generation sequencing improves the resolution of detecting mixed host blood meal sources in field collected arboviral mosquito vectors","authors":"David P. Tchouassi, Robinson O. Kisero, Gilbert Rotich, Christopher Dunlap, Baldwyn Torto, Ephantus J. Muturi","doi":"10.1111/mve.12725","DOIUrl":null,"url":null,"abstract":"<p>Accurate knowledge of blood meal hosts of different mosquito species is critical for identifying potential vectors and establishing the risk of pathogen transmission. We compared the performance of Miseq next generation sequencing approach relative to conventional Sanger sequencing approach in identification of mosquito blood meals using genetic markers targeting the 12S rRNA and cytochrome oxidase I (COI) genes. We analysed the blood meals of three mosquito vector species (<i>Aedes aegypti</i>, <i>Aedes simpsoni</i> s.l. and <i>Culex pipiens</i> s.l.) collected outdoors, and compared the frequency of single- versus multiple-blood feeding. Single host blood meals were mostly recovered for Sanger-based sequencing of the mitochondrial 12S rRNA gene, whereas Miseq sequencing employing this marker and the COI marker detected both single and multiple blood meal hosts in individual mosquitoes. Multiple blood meals (two or more hosts) which mostly included humans were detected in 19%–22.7% of <i>Ae. aegypti</i> samples. Most single host blood meals for this mosquito species were from humans (47.7%–57.1%) and dogs (9.1%–19.0%), with livestock, reptile and rodent hosts collectively accounting for 4.7%–28.9% of single host blood meals. The frequency of two or more host blood meals in <i>Ae. simpsoni</i> s.l. was 26.3%–45.5% mostly including humans, while single host blood meals were predominantly from humans (31.8%–47.4%) with representation of rodent, reptile and livestock blood meals (18.2%–68.2%). Single host blood meals from <i>Cx</i>. <i>pipiens</i> s.l. were mostly from humans (27.0%–39.4%) and cows (11.5%–27.36%). Multiple blood meal hosts that mostly included humans occurred in 21.2%–24.4% of <i>Cx. pipiens</i> s.l. samples. Estimated human blood indices ranged from 53%–76% for <i>Ae. aegypti</i>, 32%–82% for <i>Ae. simpsoni</i> s.l. and 26%–61% for <i>Cx. pipiens</i> s.l. and were consistently lower for Sanger-based sequencing approach compared to Miseq-based sequencing approach. These findings demonstrate that Miseq sequencing approach is superior to Sanger sequencing approach as it can reliably identify mixed host blood meals in a single mosquito, improving our ability to understand the transmission dynamics of mosquito-borne pathogens.</p>","PeriodicalId":18350,"journal":{"name":"Medical and Veterinary Entomology","volume":"38 4","pages":"407-415"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical and Veterinary Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mve.12725","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate knowledge of blood meal hosts of different mosquito species is critical for identifying potential vectors and establishing the risk of pathogen transmission. We compared the performance of Miseq next generation sequencing approach relative to conventional Sanger sequencing approach in identification of mosquito blood meals using genetic markers targeting the 12S rRNA and cytochrome oxidase I (COI) genes. We analysed the blood meals of three mosquito vector species (Aedes aegypti, Aedes simpsoni s.l. and Culex pipiens s.l.) collected outdoors, and compared the frequency of single- versus multiple-blood feeding. Single host blood meals were mostly recovered for Sanger-based sequencing of the mitochondrial 12S rRNA gene, whereas Miseq sequencing employing this marker and the COI marker detected both single and multiple blood meal hosts in individual mosquitoes. Multiple blood meals (two or more hosts) which mostly included humans were detected in 19%–22.7% of Ae. aegypti samples. Most single host blood meals for this mosquito species were from humans (47.7%–57.1%) and dogs (9.1%–19.0%), with livestock, reptile and rodent hosts collectively accounting for 4.7%–28.9% of single host blood meals. The frequency of two or more host blood meals in Ae. simpsoni s.l. was 26.3%–45.5% mostly including humans, while single host blood meals were predominantly from humans (31.8%–47.4%) with representation of rodent, reptile and livestock blood meals (18.2%–68.2%). Single host blood meals from Cx. pipiens s.l. were mostly from humans (27.0%–39.4%) and cows (11.5%–27.36%). Multiple blood meal hosts that mostly included humans occurred in 21.2%–24.4% of Cx. pipiens s.l. samples. Estimated human blood indices ranged from 53%–76% for Ae. aegypti, 32%–82% for Ae. simpsoni s.l. and 26%–61% for Cx. pipiens s.l. and were consistently lower for Sanger-based sequencing approach compared to Miseq-based sequencing approach. These findings demonstrate that Miseq sequencing approach is superior to Sanger sequencing approach as it can reliably identify mixed host blood meals in a single mosquito, improving our ability to understand the transmission dynamics of mosquito-borne pathogens.
期刊介绍:
Medical and Veterinary Entomology is the leading periodical in its field. The Journal covers the biology and control of insects, ticks, mites and other arthropods of medical and veterinary importance. The main strengths of the Journal lie in the fields of:
-epidemiology and transmission of vector-borne pathogens
changes in vector distribution that have impact on the pathogen transmission-
arthropod behaviour and ecology-
novel, field evaluated, approaches to biological and chemical control methods-
host arthropod interactions.
Please note that we do not consider submissions in forensic entomology.