Mapping the Intersubunit Interdomain FMN-Heme Interactions in Neuronal Nitric Oxide Synthase by Targeted Quantitative Cross-Linking Mass Spectrometry

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ting Jiang, Guanghua Wan, Haikun Zhang, Yadav Prasad Gyawali, Eric S. Underbakke and Changjian Feng*, 
{"title":"Mapping the Intersubunit Interdomain FMN-Heme Interactions in Neuronal Nitric Oxide Synthase by Targeted Quantitative Cross-Linking Mass Spectrometry","authors":"Ting Jiang,&nbsp;Guanghua Wan,&nbsp;Haikun Zhang,&nbsp;Yadav Prasad Gyawali,&nbsp;Eric S. Underbakke and Changjian Feng*,&nbsp;","doi":"10.1021/acs.biochem.4c00157","DOIUrl":null,"url":null,"abstract":"<p >Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain–domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., <i>Biochemistry</i>, 2023, 62, 2232–2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00157","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain–domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., Biochemistry, 2023, 62, 2232–2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.

Abstract Image

Abstract Image

通过靶向定量交联质谱法绘制神经元一氧化氮合酶亚基内域间 FMN-Heme 相互作用的图谱
哺乳动物体内的一氧化氮合酶(NOS)是一个多结构域蛋白家族,其结构域间电子转移(IET)受结构域-结构域相互作用的控制。钙调蛋白(Calmodulin,CaM)与 NOS 的 FMN 和血红素结构域之间连接区的典型 CaM 结合位点结合,并允许系链 FMN 结构域运动,从而使输出状态下的 FMN-heme IET 在亚基间进行,以产生 NO。我们之前的交叉连接质谱(XL MS)研究结果表明,大鼠神经元 NOS(nNOS)还原酶构建体(一种单体蛋白)的 CaM 响应区存在特定位点的蛋白质动力学[Jiang 等,《生物化学》,2023 年,62 期,2232-2237]。在这项工作中,我们扩展了 XL MS 结构制图和 AlphaFold 结构预测的组合方法,以研究同源二聚体 nNOS 加氧酶/FMN(oxyFMN)构建体,这是 NOS 输出状态的一个既定模型。我们采用了基于平行反应监测(PRM)的定量 XL MS(qXL MS)来评估 CaM 诱导的结构域间动力学和相互作用的变化。通过将交联映射到顶部 AlphaFold 结构模型上,确定了亚基内交联,并通过比较交联二聚体和单体带中的相对丰度对其进行了补充。此外,无 CaM 和有 CaM 结合的 nNOS 样品对比显示,CaM 能促成亚基间 FMN-血红素对接复合物的形成,而且 CaM 结合能诱导整个 NOS 区域发生广泛的异构构象变化。此外,观察到的交联位点对离子强度的变化有特异性反应。这表明链间盐桥负责稳定和定向输出状态,以实现高效的 FMN-血红素 IET。综上所述,我们的靶向 qXL MS 结果揭示了 CaM 和离子强度调节 CaM/FMN/heme 复合物的特定动态变化,尤其是在亚基间域间 FMN-heme 相互作用的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信