On variable-order fractional linear viscoelasticity

IF 2.5 2区 数学 Q1 MATHEMATICS
Andrea Giusti, Ivano Colombaro, Roberto Garra, Roberto Garrappa, Andrea Mentrelli
{"title":"On variable-order fractional linear viscoelasticity","authors":"Andrea Giusti, Ivano Colombaro, Roberto Garra, Roberto Garrappa, Andrea Mentrelli","doi":"10.1007/s13540-024-00288-y","DOIUrl":null,"url":null,"abstract":"<p>A generalization of fractional linear viscoelasticity based on Scarpi’s approach to variable-order fractional calculus is presented. After reviewing the general mathematical framework, a <i>variable-order fractional Maxwell model</i> is analysed as a prototypical example for the theory. Some physical considerations are then provided concerning the fractionalisation procedure and the choice of the transition functions. Lastly, the material functions for the considered model are derived and numerically evaluated for exponential-type and Mittag-Leffler-type order functions.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"153 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00288-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A generalization of fractional linear viscoelasticity based on Scarpi’s approach to variable-order fractional calculus is presented. After reviewing the general mathematical framework, a variable-order fractional Maxwell model is analysed as a prototypical example for the theory. Some physical considerations are then provided concerning the fractionalisation procedure and the choice of the transition functions. Lastly, the material functions for the considered model are derived and numerically evaluated for exponential-type and Mittag-Leffler-type order functions.

Abstract Image

关于变阶分数线性粘弹性
本文介绍了基于 Scarpi 变阶分数微积分方法的分数线性粘弹性概论。在回顾了一般数学框架之后,分析了一个变阶分数麦克斯韦模型,作为该理论的原型实例。然后,就分数化程序和过渡函数的选择提供了一些物理方面的考虑。最后,针对指数型和 Mittag-Leffler 型阶次函数,对所考虑模型的材料函数进行了推导和数值评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信