A Proof of a Frankl–Kupavskii Conjecture on Intersecting Families

IF 1 2区 数学 Q1 MATHEMATICS
Agnijo Banerjee
{"title":"A Proof of a Frankl–Kupavskii Conjecture on Intersecting Families","authors":"Agnijo Banerjee","doi":"10.1007/s00493-024-00105-3","DOIUrl":null,"url":null,"abstract":"<p>A family <span>\\(\\mathcal {F} \\subset \\mathcal {P}(n)\\)</span> is <i>r</i>-<i>wise</i> <i>k</i>-<i>intersecting</i> if <span>\\(|A_1 \\cap \\dots \\cap A_r| \\ge k\\)</span> for any <span>\\(A_1, \\dots , A_r \\in \\mathcal {F}\\)</span>. It is easily seen that if <span>\\(\\mathcal {F}\\)</span> is <i>r</i>-wise <i>k</i>-intersecting for <span>\\(r \\ge 2\\)</span>, <span>\\(k \\ge 1\\)</span> then <span>\\(|\\mathcal {F}| \\le 2^{n-1}\\)</span>. The problem of determining the maximum size of a family <span>\\(\\mathcal {F}\\)</span> that is both <span>\\(r_1\\)</span>-wise <span>\\(k_1\\)</span>-intersecting and <span>\\(r_2\\)</span>-wise <span>\\(k_2\\)</span>-intersecting was raised in 2019 by Frankl and Kupavskii (Combinatorica 39:1255–1266, 2019). They proved the surprising result that, for <span>\\((r_1,k_1) = (3,1)\\)</span> and <span>\\((r_2,k_2) = (2,32)\\)</span> then this maximum is at most <span>\\(2^{n-2}\\)</span>, and conjectured the same holds if <span>\\(k_2\\)</span> is replaced by 3. In this paper we shall not only prove this conjecture but we shall also determine the exact maximum for <span>\\((r_1,k_1) = (3,1)\\)</span> and <span>\\((r_2,k_2) = (2,3)\\)</span> for all <i>n</i>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00105-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A family \(\mathcal {F} \subset \mathcal {P}(n)\) is r-wise k-intersecting if \(|A_1 \cap \dots \cap A_r| \ge k\) for any \(A_1, \dots , A_r \in \mathcal {F}\). It is easily seen that if \(\mathcal {F}\) is r-wise k-intersecting for \(r \ge 2\), \(k \ge 1\) then \(|\mathcal {F}| \le 2^{n-1}\). The problem of determining the maximum size of a family \(\mathcal {F}\) that is both \(r_1\)-wise \(k_1\)-intersecting and \(r_2\)-wise \(k_2\)-intersecting was raised in 2019 by Frankl and Kupavskii (Combinatorica 39:1255–1266, 2019). They proved the surprising result that, for \((r_1,k_1) = (3,1)\) and \((r_2,k_2) = (2,32)\) then this maximum is at most \(2^{n-2}\), and conjectured the same holds if \(k_2\) is replaced by 3. In this paper we shall not only prove this conjecture but we shall also determine the exact maximum for \((r_1,k_1) = (3,1)\) and \((r_2,k_2) = (2,3)\) for all n.

弗兰克尔-库帕夫斯基相交族猜想的证明
一个族(\mathcal {F}如果对于任何 \(A_1, \dots , A_r \ in \mathcal {F}) 中的\(|A_1 \cap \dots \cap A_r| \ge k\) 来说,\(|A_1 \cap \dots \cap A_r| \ge k\) 是r-wise k-intersecting的,那么\(|A_1 \cap \dots \cap A_r| \ge k\) 就是r-wise k-intersecting的。)很容易看出,如果 \(mathcal {F}\) 是 r-wise k-insecting for \(r \ge 2\), \(k \ge 1\) 那么 \(|\mathcal {F}| \le 2^{n-1}\).Frankl 和 Kupavskii 在 2019 年提出了一个问题,即确定一个既 \(r_1\)-wise \(k_1\)-intersecting 又 \(r_2\)-wise \(k_2\)-intersecting 的族\(\mathcal {F}\)的最大大小(Combinatorica 39:1255-1266, 2019)。他们证明了一个令人惊讶的结果:对于 \((r_1,k_1) = (3,1)\) 和 \((r_2,k_2) = (2,32)\) ,那么这个最大值最多是\(2^{n-2}\),并且猜想如果用 3 替换 \(k_2\),这个最大值同样成立。在本文中,我们不仅要证明这个猜想,还要确定所有 n 的 \((r_1,k_1) = (3,1)\) 和 \((r_2,k_2) = (2,3)\) 的精确最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信