Euclid preparation

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
T. Castro, S. Borgani, M. Costanzi, J. Dakin, K. Dolag, A. Fumagalli, A. Ragagnin, A. Saro, A. M. C. Le Brun, N. Aghanim, A. Amara, S. Andreon, N. Auricchio, M. Baldi, S. Bardelli, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, S. Cavuoti, A. Cimatti, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, L. Corcione, F. Courbin, H. M. Courtois, M. Cropper, A. Da Silva, H. Degaudenzi, A. M. Di Giorgio, J. Dinis, F. Dubath, C. A. J. Duncan, X. Dupac, M. Farina, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, S. V. H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, N. Martinet, F. Marulli, R. Massey, S. Maurogordato, E. Medinaceli, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S.-M. Niemi, C. Padilla, S. Paltani, F. Pasian, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, R. Saglia, D. Sapone, B. Sartoris, P. Schneider, T. Schrabback, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, J.-L. Starck, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, E. A. Valentijn, L. Valenziano, T. Vassallo, A. Veropalumbo, Y. Wang, J. Weller, A. Zacchei, G. Zamorani, J. Zoubian, E. Zucca, A. Biviano, E. Bozzo, C. Cerna, C. Colodro-Conde, D. Di Ferdinando, N. Mauri, C. Neissner, Z. Sakr, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, S. Anselmi, C. Baccigalupi, M. Ballardini, A. S. Borlaff, S. Bruton, C. Burigana, R. Cabanac, A. Cappi, C. S. Carvalho, G. Castignani, G. Cañas-Herrera, K. C. Chambers, A. R. Cooray, J. Coupon, O. Cucciati, A. Díaz-Sánchez, S. Davini, S. de la Torre, G. De Lucia, G. Desprez, S. Di Domizio, H. Dole, S. Escoffier, I. Ferrero, F. Finelli, L. Gabarra, K. Ganga, J. Garcia-Bellido, F. Giacomini, G. Gozaliasl, H. Hildebrandt, S. Ilić, A. Jimanez Munñoz, J. J. E. Kajava, V. Kansal, C. C. Kirkpatrick, L. Legrand, A. Loureiro, J. Macias-Perez, M. Magliocchetti, G. Mainetti, R. Maoli, M. Martinelli, C. J. A. P. Martins, S. Matthew, M. Maturi, L. Maurin, R. B. Metcalf, M. Migliaccio, P. Monaco, G. Morgante, S. Nadathur, L. Patrizii, A. Pezzotta, V. Popa, C. Porciani, D. Potter, M. Pöntinen, P. Reimberg, P.-F. Rocci, A. G. Sánchez, J. Schaye, A. Schneider, E. Sefusatti, M. Sereno, P. Simon, A. Spurio Mancini, J. Stadel, S. A. Stanford, J. Steinwagner, G. Testera, M. Tewes, R. Teyssier, S. Toft, S. Tosi, A. Troja, M. Tucci, J. Valiviita, D. Vergani
{"title":"Euclid preparation","authors":"T. Castro, S. Borgani, M. Costanzi, J. Dakin, K. Dolag, A. Fumagalli, A. Ragagnin, A. Saro, A. M. C. Le Brun, N. Aghanim, A. Amara, S. Andreon, N. Auricchio, M. Baldi, S. Bardelli, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, S. Cavuoti, A. Cimatti, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, L. Corcione, F. Courbin, H. M. Courtois, M. Cropper, A. Da Silva, H. Degaudenzi, A. M. Di Giorgio, J. Dinis, F. Dubath, C. A. J. Duncan, X. Dupac, M. Farina, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, S. V. H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, B. Kubik, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, N. Martinet, F. Marulli, R. Massey, S. Maurogordato, E. Medinaceli, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S.-M. Niemi, C. Padilla, S. Paltani, F. Pasian, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, R. Saglia, D. Sapone, B. Sartoris, P. Schneider, T. Schrabback, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, J.-L. Starck, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, E. A. Valentijn, L. Valenziano, T. Vassallo, A. Veropalumbo, Y. Wang, J. Weller, A. Zacchei, G. Zamorani, J. Zoubian, E. Zucca, A. Biviano, E. Bozzo, C. Cerna, C. Colodro-Conde, D. Di Ferdinando, N. Mauri, C. Neissner, Z. Sakr, V. Scottez, M. Tenti, M. Viel, M. Wiesmann, Y. Akrami, S. Anselmi, C. Baccigalupi, M. Ballardini, A. S. Borlaff, S. Bruton, C. Burigana, R. Cabanac, A. Cappi, C. S. Carvalho, G. Castignani, G. Cañas-Herrera, K. C. Chambers, A. R. Cooray, J. Coupon, O. Cucciati, A. Díaz-Sánchez, S. Davini, S. de la Torre, G. De Lucia, G. Desprez, S. Di Domizio, H. Dole, S. Escoffier, I. Ferrero, F. Finelli, L. Gabarra, K. Ganga, J. Garcia-Bellido, F. Giacomini, G. Gozaliasl, H. Hildebrandt, S. Ilić, A. Jimanez Munñoz, J. J. E. Kajava, V. Kansal, C. C. Kirkpatrick, L. Legrand, A. Loureiro, J. Macias-Perez, M. Magliocchetti, G. Mainetti, R. Maoli, M. Martinelli, C. J. A. P. Martins, S. Matthew, M. Maturi, L. Maurin, R. B. Metcalf, M. Migliaccio, P. Monaco, G. Morgante, S. Nadathur, L. Patrizii, A. Pezzotta, V. Popa, C. Porciani, D. Potter, M. Pöntinen, P. Reimberg, P.-F. Rocci, A. G. Sánchez, J. Schaye, A. Schneider, E. Sefusatti, M. Sereno, P. Simon, A. Spurio Mancini, J. Stadel, S. A. Stanford, J. Steinwagner, G. Testera, M. Tewes, R. Teyssier, S. Toft, S. Tosi, A. Troja, M. Tucci, J. Valiviita, D. Vergani","doi":"10.1051/0004-6361/202348388","DOIUrl":null,"url":null,"abstract":"The <i>Euclid<i/> photometric survey of galaxy clusters stands as a powerful cosmological tool, with the capacity to significantly propel our understanding of the Universe. Despite being subdominant to dark matter and dark energy, the baryonic component of our Universe holds substantial influence over the structure and mass of galaxy clusters. This paper presents a novel model that can be used to precisely quantify the impact of baryons on the virial halo masses of galaxy clusters using the baryon fraction within a cluster as a proxy for their effect. Constructed on the premise of quasi-adiabaticity, the model includes two parameters, which are calibrated using non-radiative cosmological hydrodynamical simulations, and a single large-scale simulation from the Magneticum set, which includes the physical processes driving galaxy formation. As a main result of our analysis, we demonstrate that this model delivers a remarkable 1% relative accuracy in determining the virial dark matter-only equivalent mass of galaxy clusters starting from the corresponding total cluster mass and baryon fraction measured in hydrodynamical simulations. Furthermore, we demonstrate that this result is robust against changes in cosmological parameters and against variation of the numerical implementation of the subresolution physical processes included in the simulations. Our work substantiates previous claims regarding the impact of baryons on cluster cosmology studies. In particular, we show how neglecting these effects would lead to biased cosmological constraints for a <i>Euclid<i/>-like cluster abundance analysis. Importantly, we demonstrate that uncertainties associated with our model arising from baryonic corrections to cluster masses are subdominant when compared to the precision with which mass–observable (i.e. richness) relations will be calibrated using <i>Euclid<i/> and to our current understanding of the baryon fraction within galaxy clusters.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202348388","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Euclid photometric survey of galaxy clusters stands as a powerful cosmological tool, with the capacity to significantly propel our understanding of the Universe. Despite being subdominant to dark matter and dark energy, the baryonic component of our Universe holds substantial influence over the structure and mass of galaxy clusters. This paper presents a novel model that can be used to precisely quantify the impact of baryons on the virial halo masses of galaxy clusters using the baryon fraction within a cluster as a proxy for their effect. Constructed on the premise of quasi-adiabaticity, the model includes two parameters, which are calibrated using non-radiative cosmological hydrodynamical simulations, and a single large-scale simulation from the Magneticum set, which includes the physical processes driving galaxy formation. As a main result of our analysis, we demonstrate that this model delivers a remarkable 1% relative accuracy in determining the virial dark matter-only equivalent mass of galaxy clusters starting from the corresponding total cluster mass and baryon fraction measured in hydrodynamical simulations. Furthermore, we demonstrate that this result is robust against changes in cosmological parameters and against variation of the numerical implementation of the subresolution physical processes included in the simulations. Our work substantiates previous claims regarding the impact of baryons on cluster cosmology studies. In particular, we show how neglecting these effects would lead to biased cosmological constraints for a Euclid-like cluster abundance analysis. Importantly, we demonstrate that uncertainties associated with our model arising from baryonic corrections to cluster masses are subdominant when compared to the precision with which mass–observable (i.e. richness) relations will be calibrated using Euclid and to our current understanding of the baryon fraction within galaxy clusters.
欧氏准备
欧几里得星系团测光调查是一个强大的宇宙学工具,能够极大地推动我们对宇宙的认识。尽管重子成分在暗物质和暗能量中处于次要地位,但它对星系团的结构和质量有着重大影响。本文提出了一个新颖的模型,利用星系团内的重子分数作为重子影响的替代物,可以精确地量化重子对星系团病毒晕质量的影响。该模型是在准绝热的前提下构建的,包括两个参数(利用非辐射宇宙学流体力学模拟进行校准)和一个来自 Magneticum 集的大尺度模拟(包括驱动星系形成的物理过程)。作为我们分析的主要结果,我们证明了这个模型在确定星系团的纯病毒暗物质等效质量时,从流体力学模拟测得的相应星系团总质量和重子分数出发,具有显著的1%的相对准确性。此外,我们还证明了这一结果对宇宙学参数的变化以及模拟中包含的次分辨率物理过程的数值实现的变化都是稳健的。我们的工作证实了之前关于重子对星团宇宙学研究影响的说法。特别是,我们展示了忽略这些影响将如何导致类似欧几里得的星团丰度分析的宇宙学约束出现偏差。重要的是,我们证明,与利用 Euclid 标定质量-观测(即丰度)关系的精度相比,以及与我们目前对星系团内重子分数的理解相比,重子对星系团质量的修正所引起的与我们的模型相关的不确定性是次要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信