Kai Wang, Xu Zhang, Yifan Sun, Tianyi Xu, Jiqiao Li, Song Cao
{"title":"YOLO-DFT: An object detection method based on cloud data fusion and transfer learning for power system equipment maintenance","authors":"Kai Wang, Xu Zhang, Yifan Sun, Tianyi Xu, Jiqiao Li, Song Cao","doi":"10.1049/cim2.12104","DOIUrl":null,"url":null,"abstract":"<p>Object detection techniques have been widely used in power system equipment maintenance. However, in power systems, the accuracy of object detection is limited by the scarcity of publicly available datasets and the lack of scene pertinence. In order to solve these problems, an object detection method based on cloud data fusion and transfer learning (YOLO-DFT) for power system equipment maintenance is proposed. Illustratively, YOLO-DFT focuses on the object detection task involving birds and humans, generating a substantial and resilient human-bird dataset through cloud-based data fusion to compensate for the dearth of public datasets in the power system domain. By seamlessly integrating the YOLOv5 algorithm with a transfer learning strategy, a targeted detection mechanism for specific locations is meticulously formulated. The experimental results demonstrate that YOLO-DFT effectively addresses object detection challenges in power systems, achieving a Mean Average Precision (MAP) measure of 0.925 across all classes, thereby providing a valuable reference for the maintenance of power system equipment.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Object detection techniques have been widely used in power system equipment maintenance. However, in power systems, the accuracy of object detection is limited by the scarcity of publicly available datasets and the lack of scene pertinence. In order to solve these problems, an object detection method based on cloud data fusion and transfer learning (YOLO-DFT) for power system equipment maintenance is proposed. Illustratively, YOLO-DFT focuses on the object detection task involving birds and humans, generating a substantial and resilient human-bird dataset through cloud-based data fusion to compensate for the dearth of public datasets in the power system domain. By seamlessly integrating the YOLOv5 algorithm with a transfer learning strategy, a targeted detection mechanism for specific locations is meticulously formulated. The experimental results demonstrate that YOLO-DFT effectively addresses object detection challenges in power systems, achieving a Mean Average Precision (MAP) measure of 0.925 across all classes, thereby providing a valuable reference for the maintenance of power system equipment.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).