Dongyue Li , Chengshuang Wu , Lu Xie , Yong Zhang , Peter K. Liaw , Wenrui Wang
{"title":"Improving tensile and impact properties of Fe50Mn30Co10Cr10 high entropy alloy via microstructural engineering","authors":"Dongyue Li , Chengshuang Wu , Lu Xie , Yong Zhang , Peter K. Liaw , Wenrui Wang","doi":"10.1016/j.intermet.2024.108314","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the Fe50Mn30Co10Cr10 high entropy alloy (HEA), featuring a dual-phase structure with face-centered cubic (FCC) and hexagonal close-packed (HCP) phases, in both cast and forged states. The cast samples exhibited an average tensile strength of 675.9 MPa and an elongation at break of 34 %, while the forged samples showed superior properties with a strength of 821.0 MPa and 50 % elongation. Impact tests at room temperature, 200 K, and 77 K revealed that forged samples consistently had higher impact energy (144 J, 119 J, and 109 J, respectively) compared to cast samples (99 J, 80 J, and 66 J). This research underscores the significant influence of the dual-phase structure and fabrication process on the mechanical and impact properties of the Fe50Mn30Co10Cr10 system HEAs.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096697952400133X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the Fe50Mn30Co10Cr10 high entropy alloy (HEA), featuring a dual-phase structure with face-centered cubic (FCC) and hexagonal close-packed (HCP) phases, in both cast and forged states. The cast samples exhibited an average tensile strength of 675.9 MPa and an elongation at break of 34 %, while the forged samples showed superior properties with a strength of 821.0 MPa and 50 % elongation. Impact tests at room temperature, 200 K, and 77 K revealed that forged samples consistently had higher impact energy (144 J, 119 J, and 109 J, respectively) compared to cast samples (99 J, 80 J, and 66 J). This research underscores the significant influence of the dual-phase structure and fabrication process on the mechanical and impact properties of the Fe50Mn30Co10Cr10 system HEAs.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.