Generation of genetic codes with 2-adic codon algebra and adaptive dynamics

IF 2 4区 生物学 Q2 BIOLOGY
Ekaterina Yurova Axelsson, Andrei Khrennikov
{"title":"Generation of genetic codes with 2-adic codon algebra and adaptive dynamics","authors":"Ekaterina Yurova Axelsson,&nbsp;Andrei Khrennikov","doi":"10.1016/j.biosystems.2024.105230","DOIUrl":null,"url":null,"abstract":"<div><p>This is a brief review on modeling genetic codes with the aid of 2-adic dynamical systems. In this model amino acids are encoded by the attractors of such dynamical systems. Each genetic code is coupled to the special class of 2-adic dynamics. We consider the discrete dynamical systems, These are the iterations of a function <span><math><mrow><mi>F</mi><mo>:</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>→</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is the ring of 2-adic numbers (2-adic tree). A genetic code is characterized by the set of attractors of a function belonging to the code generating functional class. The main mathematical problem is to reduce degeneration of dynamic representation and select the optimal generating function. Here optimality can be treated in many ways. One possibility is to consider the Lipschitz functions playing the crucial role in general theory of iterations. Then we minimize the Lip-constant. The main issue is to find the proper biological interpretation of code-functions. One can speculate that the evolution of the genetic codes can be described in information space of the nucleotide-strings endowed with ultrametric (treelike) geometry. A code-function is a fitness function; the solutions of the genetic code optimization problem are attractors of the code-function. We illustrate this approach by generation of the standard nuclear and (vertebrate) mitochondrial genetics codes.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"240 ","pages":"Article 105230"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303264724001151/pdfft?md5=54861df65cbb214fef55ccb2b43b6c43&pid=1-s2.0-S0303264724001151-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001151","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This is a brief review on modeling genetic codes with the aid of 2-adic dynamical systems. In this model amino acids are encoded by the attractors of such dynamical systems. Each genetic code is coupled to the special class of 2-adic dynamics. We consider the discrete dynamical systems, These are the iterations of a function F:Z2Z2, where Z2 is the ring of 2-adic numbers (2-adic tree). A genetic code is characterized by the set of attractors of a function belonging to the code generating functional class. The main mathematical problem is to reduce degeneration of dynamic representation and select the optimal generating function. Here optimality can be treated in many ways. One possibility is to consider the Lipschitz functions playing the crucial role in general theory of iterations. Then we minimize the Lip-constant. The main issue is to find the proper biological interpretation of code-functions. One can speculate that the evolution of the genetic codes can be described in information space of the nucleotide-strings endowed with ultrametric (treelike) geometry. A code-function is a fitness function; the solutions of the genetic code optimization problem are attractors of the code-function. We illustrate this approach by generation of the standard nuclear and (vertebrate) mitochondrial genetics codes.

利用 2-adic 密码子代数和自适应动力学生成遗传密码。
本文简要回顾了借助二元动力学系统建立遗传密码模型的过程。在这个模型中,氨基酸是由这种动力学系统的吸引子编码的。每个遗传密码都与特殊的 2-adic 动力系统相耦合。我们考虑的是离散动力系统,它们是函数 F:Z2→Z2 的迭代,其中 Z2 是 2-adic 数环(2-adic 树)。遗传密码的特征是属于密码生成函数类的函数的吸引子集。主要的数学问题是减少动态表示的退化和选择最优生成函数。这里的最优性有多种处理方法。一种方法是考虑在一般迭代理论中起关键作用的 Lipschitz 函数。然后,我们最小化 Lip 常量。主要问题是找到代码函数的适当生物学解释。我们可以推测,遗传密码的进化可以在核苷酸链的信息空间中用超对称(树状)几何来描述。代码函数是一种适应度函数;遗传密码优化问题的解就是代码函数的吸引子。我们通过生成标准的核遗传密码和(脊椎动物)线粒体遗传密码来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信