Sunyang Fu, Liwei Wang, Huan He, Andrew Wen, Nansu Zong, Anamika Kumari, Feifan Liu, Sicheng Zhou, Rui Zhang, Chenyu Li, Yanshan Wang, Jennifer St Sauver, Hongfang Liu, Sunghwan Sohn
{"title":"A taxonomy for advancing systematic error analysis in multi-site electronic health record-based clinical concept extraction.","authors":"Sunyang Fu, Liwei Wang, Huan He, Andrew Wen, Nansu Zong, Anamika Kumari, Feifan Liu, Sicheng Zhou, Rui Zhang, Chenyu Li, Yanshan Wang, Jennifer St Sauver, Hongfang Liu, Sunghwan Sohn","doi":"10.1093/jamia/ocae101","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Error analysis plays a crucial role in clinical concept extraction, a fundamental subtask within clinical natural language processing (NLP). The process typically involves a manual review of error types, such as contextual and linguistic factors contributing to their occurrence, and the identification of underlying causes to refine the NLP model and improve its performance. Conducting error analysis can be complex, requiring a combination of NLP expertise and domain-specific knowledge. Due to the high heterogeneity of electronic health record (EHR) settings across different institutions, challenges may arise when attempting to standardize and reproduce the error analysis process.</p><p><strong>Objectives: </strong>This study aims to facilitate a collaborative effort to establish common definitions and taxonomies for capturing diverse error types, fostering community consensus on error analysis for clinical concept extraction tasks.</p><p><strong>Materials and methods: </strong>We iteratively developed and evaluated an error taxonomy based on existing literature, standards, real-world data, multisite case evaluations, and community feedback. The finalized taxonomy was released in both .dtd and .owl formats at the Open Health Natural Language Processing Consortium. The taxonomy is compatible with several different open-source annotation tools, including MAE, Brat, and MedTator.</p><p><strong>Results: </strong>The resulting error taxonomy comprises 43 distinct error classes, organized into 6 error dimensions and 4 properties, including model type (symbolic and statistical machine learning), evaluation subject (model and human), evaluation level (patient, document, sentence, and concept), and annotation examples. Internal and external evaluations revealed strong variations in error types across methodological approaches, tasks, and EHR settings. Key points emerged from community feedback, including the need to enhancing clarity, generalizability, and usability of the taxonomy, along with dissemination strategies.</p><p><strong>Conclusion: </strong>The proposed taxonomy can facilitate the acceleration and standardization of the error analysis process in multi-site settings, thus improving the provenance, interpretability, and portability of NLP models. Future researchers could explore the potential direction of developing automated or semi-automated methods to assist in the classification and standardization of error analysis.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Error analysis plays a crucial role in clinical concept extraction, a fundamental subtask within clinical natural language processing (NLP). The process typically involves a manual review of error types, such as contextual and linguistic factors contributing to their occurrence, and the identification of underlying causes to refine the NLP model and improve its performance. Conducting error analysis can be complex, requiring a combination of NLP expertise and domain-specific knowledge. Due to the high heterogeneity of electronic health record (EHR) settings across different institutions, challenges may arise when attempting to standardize and reproduce the error analysis process.
Objectives: This study aims to facilitate a collaborative effort to establish common definitions and taxonomies for capturing diverse error types, fostering community consensus on error analysis for clinical concept extraction tasks.
Materials and methods: We iteratively developed and evaluated an error taxonomy based on existing literature, standards, real-world data, multisite case evaluations, and community feedback. The finalized taxonomy was released in both .dtd and .owl formats at the Open Health Natural Language Processing Consortium. The taxonomy is compatible with several different open-source annotation tools, including MAE, Brat, and MedTator.
Results: The resulting error taxonomy comprises 43 distinct error classes, organized into 6 error dimensions and 4 properties, including model type (symbolic and statistical machine learning), evaluation subject (model and human), evaluation level (patient, document, sentence, and concept), and annotation examples. Internal and external evaluations revealed strong variations in error types across methodological approaches, tasks, and EHR settings. Key points emerged from community feedback, including the need to enhancing clarity, generalizability, and usability of the taxonomy, along with dissemination strategies.
Conclusion: The proposed taxonomy can facilitate the acceleration and standardization of the error analysis process in multi-site settings, thus improving the provenance, interpretability, and portability of NLP models. Future researchers could explore the potential direction of developing automated or semi-automated methods to assist in the classification and standardization of error analysis.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.