Streamlining event extraction with a simplified annotation framework.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-04-29 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1361483
Chanatip Saetia, Areeya Thonglong, Thanpitcha Amornchaiteera, Tawunrat Chalothorn, Supawat Taerungruang, Pakpoom Buabthong
{"title":"Streamlining event extraction with a simplified annotation framework.","authors":"Chanatip Saetia, Areeya Thonglong, Thanpitcha Amornchaiteera, Tawunrat Chalothorn, Supawat Taerungruang, Pakpoom Buabthong","doi":"10.3389/frai.2024.1361483","DOIUrl":null,"url":null,"abstract":"<p><p>Event extraction, grounded in semantic relationships, can serve as a simplified relation extraction. In this study, we propose an efficient open-domain event annotation framework tailored for subsequent information extraction, with a specific focus on its applicability to low-resource languages. The proposed event annotation method, which is based on event semantic elements, demonstrates substantial time-efficiency gains over traditional Universal Dependencies (UD) tagging. We show how language-specific pretraining outperforms multilingual counterparts in entity and relation extraction tasks and emphasize the importance of task- and language-specific fine-tuning for optimal model performance. Furthermore, we demonstrate the improvement of model performance upon integrating UD information during pre-training, achieving the F1 score of 71.16 and 60.43% for entity and relation extraction respectively. In addition, we showcase the usage of our extracted event graph for improving node classification in a retail banking domain. This work provides valuable guidance on improving information extraction and outlines a methodology for developing training datasets, particularly for low-resource languages.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1361483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Event extraction, grounded in semantic relationships, can serve as a simplified relation extraction. In this study, we propose an efficient open-domain event annotation framework tailored for subsequent information extraction, with a specific focus on its applicability to low-resource languages. The proposed event annotation method, which is based on event semantic elements, demonstrates substantial time-efficiency gains over traditional Universal Dependencies (UD) tagging. We show how language-specific pretraining outperforms multilingual counterparts in entity and relation extraction tasks and emphasize the importance of task- and language-specific fine-tuning for optimal model performance. Furthermore, we demonstrate the improvement of model performance upon integrating UD information during pre-training, achieving the F1 score of 71.16 and 60.43% for entity and relation extraction respectively. In addition, we showcase the usage of our extracted event graph for improving node classification in a retail banking domain. This work provides valuable guidance on improving information extraction and outlines a methodology for developing training datasets, particularly for low-resource languages.

用简化的注释框架简化事件提取。
以语义关系为基础的事件提取可以作为简化的关系提取。在本研究中,我们提出了一种为后续信息提取量身定制的高效开放域事件注释框架,并特别关注其在低资源语言中的适用性。所提出的事件注释方法基于事件语义元素,与传统的通用依赖关系(UD)标记法相比,大大提高了时间效率。我们展示了在实体和关系提取任务中,特定语言的预训练如何优于多语言同行,并强调了任务和特定语言微调对优化模型性能的重要性。此外,我们还展示了在预训练过程中整合 UD 信息后模型性能的提升,在实体和关系提取方面的 F1 分数分别达到了 71.16% 和 60.43%。此外,我们还展示了如何利用提取的事件图改进零售银行领域的节点分类。这项工作为改进信息提取提供了有价值的指导,并概述了开发训练数据集的方法,尤其是针对低资源语言的训练数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信