Transmission of reduced levels of miR-34/449 from sperm to preimplantation embryos is a key step in the transgenerational epigenetic inheritance of the effects of paternal chronic social instability stress.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2024-12-01 Epub Date: 2024-05-13 DOI:10.1080/15592294.2024.2346694
Alexandre Champroux, Yang Tang, David A Dickson, Alice Meng, Anne Harrington, Lucy Liaw, Matteo Marzi, Francesco Nicassio, Thorsten M Schlaeger, Larry A Feig
{"title":"Transmission of reduced levels of miR-34/449 from sperm to preimplantation embryos is a key step in the transgenerational epigenetic inheritance of the effects of paternal chronic social instability stress.","authors":"Alexandre Champroux, Yang Tang, David A Dickson, Alice Meng, Anne Harrington, Lucy Liaw, Matteo Marzi, Francesco Nicassio, Thorsten M Schlaeger, Larry A Feig","doi":"10.1080/15592294.2024.2346694","DOIUrl":null,"url":null,"abstract":"<p><p>The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093028/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2024.2346694","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.

miR-34/449水平的降低从精子传递到植入前胚胎是父代慢性社会不稳定压力影响的跨代表观遗传的关键步骤。
雄性小鼠暴露于慢性社会不稳定性(CSI)应激的跨代效应与 miR-34/449 家族多个成员的精子水平下降有关,这种下降在交配后通过植入前胚胎(PIE)发育持续存在。在这里,我们证明了这些 miRNA 变化的重要性,因为我们发现,恢复 CSI 应激雄性胚胎 PIE 中的 miR-34c 水平,可防止其成年雌性后代通常会出现的焦虑升高和社交能力缺陷。它还至少部分恢复了通常在雄性后代中降低的精子 miR-34/449 水平,这些雄性后代会将这些性别特异性遗传给其后代。令人震惊的是,这些实验还发现,诱导 PIE 中的 miR-34c 水平会增强其自身基因和 miR-449 在这些细胞中的表达。在受精时将来自精子的 miR-34c 导入卵母细胞后,也可能会诱导胚胎 miR-34/449 基因的表达。因此,当 CSI 胁迫小鼠的精子 miR-34c 水平降低时,这种 miRNA 扩增系统会受到抑制,这就可以解释为什么尽管精子中这些 miRNA 的水平比 PIE 中已经存在的 miRNA 水平低约 50 倍,但在由它们产生的 PIE 中却发现 miR-34/449 水平受到了类似倍数的抑制。我们以前曾发现,受到早期生活创伤的男性精子中的miR-34/449水平也会降低。我们在这里发现,miR-34c还能增加其自身基因的表达,以及人类胚胎干细胞中miR-449基因的表达,这表明从精子miR-34/449水平低的男性中提取的人类PIE也可能含有这种潜在的有害缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信