Plug-and-Play Stability for Intracortical Brain-Computer Interfaces: A One-Year Demonstration of Seamless Brain-to-Text Communication.

Chaofei Fan, Nick Hahn, Foram Kamdar, Donald Avansino, Guy H Wilson, Leigh Hochberg, Krishna V Shenoy, Jaimie M Henderson, Francis R Willett
{"title":"Plug-and-Play Stability for Intracortical Brain-Computer Interfaces: A One-Year Demonstration of Seamless Brain-to-Text Communication.","authors":"Chaofei Fan, Nick Hahn, Foram Kamdar, Donald Avansino, Guy H Wilson, Leigh Hochberg, Krishna V Shenoy, Jaimie M Henderson, Francis R Willett","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Intracortical brain-computer interfaces (iBCIs) have shown promise for restoring rapid communication to people with neurological disorders such as amyotrophic lateral sclerosis (ALS). However, to maintain high performance over time, iBCIs typically need frequent recalibration to combat changes in the neural recordings that accrue over days. This requires iBCI users to stop using the iBCI and engage in supervised data collection, making the iBCI system hard to use. In this paper, we propose a method that enables self-recalibration of communication iBCIs without interrupting the user. Our method leverages large language models (LMs) to automatically correct errors in iBCI outputs. The self-recalibration process uses these corrected outputs (\"pseudo-labels\") to continually update the iBCI decoder online. Over a period of more than one year (403 days), we evaluated our Continual Online Recalibration with Pseudo-labels (CORP) framework with one clinical trial participant. CORP achieved a stable decoding accuracy of 93.84% in an online handwriting iBCI task, significantly outperforming other baseline methods. Notably, this is the longest-running iBCI stability demonstration involving a human participant. Our results provide the first evidence for long-term stabilization of a plug-and-play, high-performance communication iBCI, addressing a major barrier for the clinical translation of iBCIs.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"36 ","pages":"42258-42270"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intracortical brain-computer interfaces (iBCIs) have shown promise for restoring rapid communication to people with neurological disorders such as amyotrophic lateral sclerosis (ALS). However, to maintain high performance over time, iBCIs typically need frequent recalibration to combat changes in the neural recordings that accrue over days. This requires iBCI users to stop using the iBCI and engage in supervised data collection, making the iBCI system hard to use. In this paper, we propose a method that enables self-recalibration of communication iBCIs without interrupting the user. Our method leverages large language models (LMs) to automatically correct errors in iBCI outputs. The self-recalibration process uses these corrected outputs ("pseudo-labels") to continually update the iBCI decoder online. Over a period of more than one year (403 days), we evaluated our Continual Online Recalibration with Pseudo-labels (CORP) framework with one clinical trial participant. CORP achieved a stable decoding accuracy of 93.84% in an online handwriting iBCI task, significantly outperforming other baseline methods. Notably, this is the longest-running iBCI stability demonstration involving a human participant. Our results provide the first evidence for long-term stabilization of a plug-and-play, high-performance communication iBCI, addressing a major barrier for the clinical translation of iBCIs.

皮层内脑机接口的即插即用稳定性:大脑皮层内脑机接口的即插即用稳定性:大脑与文本无缝通信的一年演示。
皮质内脑机接口(iBCIs)有望让肌萎缩性脊髓侧索硬化症(ALS)等神经系统疾病患者恢复快速交流。然而,为了长期保持高性能,iBCI 通常需要经常重新校准,以应对日积月累的神经记录变化。这就要求 iBCI 用户停止使用 iBCI 并进行有监督的数据收集,从而使 iBCI 系统难以使用。在本文中,我们提出了一种方法,可以在不打断用户的情况下实现通信 iBCI 的自我校准。我们的方法利用大型语言模型(LM)来自动纠正 iBCI 输出中的错误。自我校准过程使用这些校正输出("伪标签")不断在线更新 iBCI 解码器。在长达一年多(403 天)的时间里,我们通过一名临床试验参与者评估了我们的 "伪标签持续在线重新校准"(CORP)框架。在在线手写 iBCI 任务中,CORP 的解码准确率稳定在 93.84%,明显优于其他基线方法。值得注意的是,这是有人类参与者参与的持续时间最长的 iBCI 稳定性演示。我们的研究结果首次证明了即插即用、高性能通信 iBCI 的长期稳定性,解决了 iBCI 临床转化的主要障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信