Jingcheng Yang, Mo Sun, Zihan Ran, Taehwan Yang, Deepali L Kundnani, Francesca Storici, Penghao Xu
{"title":"rNMPID: a database for riboNucleoside MonoPhosphates in DNA.","authors":"Jingcheng Yang, Mo Sun, Zihan Ran, Taehwan Yang, Deepali L Kundnani, Francesca Storici, Penghao Xu","doi":"10.1093/bioadv/vbae063","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Ribonucleoside monophosphates (rNMPs) are the most abundant non-standard nucleotides embedded in genomic DNA. If the presence of rNMP in DNA cannot be controlled, it can lead to genome instability. The actual regulatory functions of rNMPs in DNA remain mainly unknown. Considering the association between rNMP embedment and various diseases and cancer, the phenomenon of rNMP embedment in DNA has become a prominent area of research in recent years.</p><p><strong>Results: </strong>We introduce the rNMPID database, which is the first database revealing rNMP-embedment characteristics, strand bias, and preferred incorporation patterns in the genomic DNA of samples from bacterial to human cells of different genetic backgrounds. The rNMPID database uses datasets generated by different rNMP-mapping techniques. It provides the researchers with a solid foundation to explore the features of rNMP embedded in the genomic DNA of multiple sources, and their association with cellular functions, and, in future, disease. It also significantly benefits researchers in the fields of genetics and genomics who aim to integrate their studies with the rNMP-embedment data.</p><p><strong>Availability and implementation: </strong>rNMPID is freely accessible on the web at https://www.rnmpid.org.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae063"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11088741/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Ribonucleoside monophosphates (rNMPs) are the most abundant non-standard nucleotides embedded in genomic DNA. If the presence of rNMP in DNA cannot be controlled, it can lead to genome instability. The actual regulatory functions of rNMPs in DNA remain mainly unknown. Considering the association between rNMP embedment and various diseases and cancer, the phenomenon of rNMP embedment in DNA has become a prominent area of research in recent years.
Results: We introduce the rNMPID database, which is the first database revealing rNMP-embedment characteristics, strand bias, and preferred incorporation patterns in the genomic DNA of samples from bacterial to human cells of different genetic backgrounds. The rNMPID database uses datasets generated by different rNMP-mapping techniques. It provides the researchers with a solid foundation to explore the features of rNMP embedded in the genomic DNA of multiple sources, and their association with cellular functions, and, in future, disease. It also significantly benefits researchers in the fields of genetics and genomics who aim to integrate their studies with the rNMP-embedment data.
Availability and implementation: rNMPID is freely accessible on the web at https://www.rnmpid.org.