GLIMMERS: glioma molecular markers exploration using long-read sequencing.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-04-15 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae058
Wichayapat Thongrattana, Tantip Arigul, Bhoom Suktitipat, Manop Pithukpakorn, Sith Sathornsumetee, Thidathip Wongsurawat, Piroon Jenjaroenpun
{"title":"GLIMMERS: glioma molecular markers exploration using long-read sequencing.","authors":"Wichayapat Thongrattana, Tantip Arigul, Bhoom Suktitipat, Manop Pithukpakorn, Sith Sathornsumetee, Thidathip Wongsurawat, Piroon Jenjaroenpun","doi":"10.1093/bioadv/vbae058","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The revised WHO guidelines for classifying and grading brain tumors include several copy number variation (CNV) markers. The turnaround time for detecting CNVs and alterations throughout the entire genome is drastically reduced with the customized read incremental approach on the nanopore platform. However, this approach is challenging for non-bioinformaticians due to the need to use multiple software tools, extract CNV markers and interpret results, which creates barriers due to the time and specialized resources that are necessary. To address this problem and help clinicians classify and grade brain tumors, we developed GLIMMERS: glioma molecular markers exploration using long-read sequencing, an open-access tool that automatically analyzes nanopore-based CNV data and generates simplified reports.</p><p><strong>Availability and implementation: </strong>GLIMMERS is available at https://gitlab.com/silol_public/glimmers under the terms of the MIT license.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: The revised WHO guidelines for classifying and grading brain tumors include several copy number variation (CNV) markers. The turnaround time for detecting CNVs and alterations throughout the entire genome is drastically reduced with the customized read incremental approach on the nanopore platform. However, this approach is challenging for non-bioinformaticians due to the need to use multiple software tools, extract CNV markers and interpret results, which creates barriers due to the time and specialized resources that are necessary. To address this problem and help clinicians classify and grade brain tumors, we developed GLIMMERS: glioma molecular markers exploration using long-read sequencing, an open-access tool that automatically analyzes nanopore-based CNV data and generates simplified reports.

Availability and implementation: GLIMMERS is available at https://gitlab.com/silol_public/glimmers under the terms of the MIT license.

GLIMMERS:利用长线程测序探索胶质瘤分子标记物。
摘要:世卫组织修订的脑肿瘤分类和分级指南包括多个拷贝数变异(CNV)标记。利用纳米孔平台上的定制增量读取方法,检测整个基因组中的 CNV 和改变的周转时间大大缩短。然而,由于需要使用多种软件工具、提取 CNV 标记和解释结果,这种方法对非生物信息学家来说具有挑战性,这就造成了必要的时间和专业资源方面的障碍。为了解决这个问题并帮助临床医生对脑肿瘤进行分类和分级,我们开发了GLIMMERS:利用长读数测序探索胶质瘤分子标记物,这是一种开放获取的工具,可自动分析基于纳米孔的CNV数据并生成简化报告:GLIMMERS可在https://gitlab.com/silol_public/glimmers,采用MIT许可条款。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信