Thermodynamic analysis of energy coupling by determination of the Onsager phenomenological coefficients for a 3×3 system of coupled chemical reactions and transport in ATP synthesis and its mechanistic implications

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sunil Nath
{"title":"Thermodynamic analysis of energy coupling by determination of the Onsager phenomenological coefficients for a 3×3 system of coupled chemical reactions and transport in ATP synthesis and its mechanistic implications","authors":"Sunil Nath","doi":"10.1016/j.biosystems.2024.105228","DOIUrl":null,"url":null,"abstract":"<div><p>The nonequilibrium coupled processes of oxidation and ATP synthesis in the fundamental process of oxidative phosphorylation (OXPHOS) are of vital importance in biosystems. These coupled chemical reaction and transport bioenergetic processes using the OXPHOS pathway meet &gt;90% of the ATP demand in aerobic systems. On the basis of experimentally determined thermodynamic OXPHOS flux-force relationships and biochemical data for the ternary system of oxidation, ion transport, and ATP synthesis, the Onsager phenomenological coefficients have been computed, including an estimate of error. A new biothermokinetic theory of energy coupling has been formulated and on its basis the thermodynamic parameters, such as the overall degree of coupling, <span><math><mrow><mi>q</mi></mrow></math></span> and the phenomenological stoichiometry, <span><math><mrow><mi>Z</mi></mrow></math></span> of the coupled system have been evaluated. The amount of ATP produced per oxygen consumed, i.e. the actual, operating P/O ratio in the biosystem, the thermodynamic efficiency of the coupled reactions, <span><math><mrow><mi>η</mi></mrow></math></span>, and the Gibbs free energy dissipation, <span><math><mrow><mi>Φ</mi></mrow></math></span> have been calculated and shown to be in agreement with experimental data. At the concentration gradients of ADP and ATP prevailing under state 3 physiological conditions of OXPHOS that yield <span><math><mrow><msub><mi>V</mi><mi>max</mi></msub></mrow></math></span> rates of ATP synthesis, a <em>maximum</em> in <span><math><mrow><mi>Φ</mi></mrow></math></span> of <span><math><mrow><mo>∼</mo><mn>0.5</mn><mspace></mspace><mi>J</mi><mspace></mspace><msup><mrow><mo>(</mo><mrow><mi>h</mi><mspace></mspace><mi>m</mi><mi>g</mi><mspace></mspace><mi>p</mi><mi>r</mi><mi>o</mi><mi>t</mi><mi>e</mi><mi>i</mi><mi>n</mi></mrow><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, corresponding to a thermodynamic efficiency of <span><math><mrow><mo>∼</mo><mn>60</mn><mo>%</mo></mrow></math></span> for oxidation on succinate, has been obtained. Novel mechanistic insights arising from the above have been discussed. This is the first report of a 3 × 3 system of coupled chemical reactions with transport in a biological context in which the phenomenological coefficients have been evaluated from experimental data.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The nonequilibrium coupled processes of oxidation and ATP synthesis in the fundamental process of oxidative phosphorylation (OXPHOS) are of vital importance in biosystems. These coupled chemical reaction and transport bioenergetic processes using the OXPHOS pathway meet >90% of the ATP demand in aerobic systems. On the basis of experimentally determined thermodynamic OXPHOS flux-force relationships and biochemical data for the ternary system of oxidation, ion transport, and ATP synthesis, the Onsager phenomenological coefficients have been computed, including an estimate of error. A new biothermokinetic theory of energy coupling has been formulated and on its basis the thermodynamic parameters, such as the overall degree of coupling, q and the phenomenological stoichiometry, Z of the coupled system have been evaluated. The amount of ATP produced per oxygen consumed, i.e. the actual, operating P/O ratio in the biosystem, the thermodynamic efficiency of the coupled reactions, η, and the Gibbs free energy dissipation, Φ have been calculated and shown to be in agreement with experimental data. At the concentration gradients of ADP and ATP prevailing under state 3 physiological conditions of OXPHOS that yield Vmax rates of ATP synthesis, a maximum in Φ of 0.5J(hmgprotein)1, corresponding to a thermodynamic efficiency of 60% for oxidation on succinate, has been obtained. Novel mechanistic insights arising from the above have been discussed. This is the first report of a 3 × 3 system of coupled chemical reactions with transport in a biological context in which the phenomenological coefficients have been evaluated from experimental data.

通过确定 ATP 合成中 3×3 耦合化学反应和传输系统的 Onsager 现象系数进行能量耦合的热力学分析及其机理意义。
氧化磷酸化(OXPHOS)这一基本过程中的氧化和 ATP 合成的非平衡耦合过程在生物系统中至关重要。这些使用 OXPHOS 途径的耦合化学反应和运输生物能过程满足了有氧系统中超过 90% 的 ATP 需求。根据实验确定的热力学 OXPHOS 通量-力关系以及氧化、离子运输和 ATP 合成三元系统的生化数据,计算出了 Onsager 现象系数,包括误差估计值。在此基础上,对热力学参数,如耦合系统的总体耦合度和现象化学计量进行了评估。计算得出了每消耗一个氧气所产生的 ATP 量(即生物系统中实际运行的 P/O 比)、耦合反应的热力学效率以及吉布斯自由能耗散,并证明与实验数据一致。在产生 ATP 合成率的 OXPHOS 状态 3 生理条件下,ADP 和 ATP 的浓度梯度普遍存在,计算得出琥珀酸氧化反应的热力学效率最大值为 。研究人员还讨论了上述结果带来的新的机理启示。这是在生物背景下首次报道 3×3 的耦合化学反应与传输系统,其中的现象学系数是根据实验数据评估得出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信