ShapeAXI: Shape Analysis Explainability and Interpretability.

Juan Carlos Prieto, Felicia Miranda, Marcela Gurgel, Luc Anchling, Nathan Hutin, Selene Barone, Najla Al Turkestani, Aron Aliaga, Marilia Yatabe, Jonas Bianchi, Lucia Cevidanes
{"title":"ShapeAXI: Shape Analysis Explainability and Interpretability.","authors":"Juan Carlos Prieto, Felicia Miranda, Marcela Gurgel, Luc Anchling, Nathan Hutin, Selene Barone, Najla Al Turkestani, Aron Aliaga, Marilia Yatabe, Jonas Bianchi, Lucia Cevidanes","doi":"10.1117/12.3007053","DOIUrl":null,"url":null,"abstract":"<p><p>ShapeAXI represents a cutting-edge framework for shape analysis that leverages a multi-view approach, capturing 3D objects from diverse viewpoints and subsequently analyzing them via 2D Convolutional Neural Networks (CNNs). We implement an automatic N-fold cross-validation process and aggregate the results across all folds. This ensures insightful explainability heat-maps for each class across every shape, enhancing interpretability and contributing to a more nuanced understanding of the underlying phenomena. We demonstrate the versatility of ShapeAXI through two targeted classification experiments. The first experiment categorizes condyles into healthy and degenerative states. The second, more intricate experiment, engages with shapes extracted from CBCT scans of cleft patients, efficiently classifying them into four severity classes. This innovative application not only aligns with existing medical research but also opens new avenues for specialized cleft patient analysis, holding considerable promise for both scientific exploration and clinical practice. The rich insights derived from ShapeAXI's explainability images reinforce existing knowledge and provide a platform for fresh discovery in the fields of condyle assessment and cleft patient severity classification. As a versatile and interpretative tool, ShapeAXI sets a new benchmark in 3D object interpretation and classification, and its groundbreaking approach hopes to make significant contributions to research and practical applications across various domains. ShapeAXI is available in our GitHub repository https://github.com/DCBIA-OrthoLab/ShapeAXI.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12931 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ShapeAXI represents a cutting-edge framework for shape analysis that leverages a multi-view approach, capturing 3D objects from diverse viewpoints and subsequently analyzing them via 2D Convolutional Neural Networks (CNNs). We implement an automatic N-fold cross-validation process and aggregate the results across all folds. This ensures insightful explainability heat-maps for each class across every shape, enhancing interpretability and contributing to a more nuanced understanding of the underlying phenomena. We demonstrate the versatility of ShapeAXI through two targeted classification experiments. The first experiment categorizes condyles into healthy and degenerative states. The second, more intricate experiment, engages with shapes extracted from CBCT scans of cleft patients, efficiently classifying them into four severity classes. This innovative application not only aligns with existing medical research but also opens new avenues for specialized cleft patient analysis, holding considerable promise for both scientific exploration and clinical practice. The rich insights derived from ShapeAXI's explainability images reinforce existing knowledge and provide a platform for fresh discovery in the fields of condyle assessment and cleft patient severity classification. As a versatile and interpretative tool, ShapeAXI sets a new benchmark in 3D object interpretation and classification, and its groundbreaking approach hopes to make significant contributions to research and practical applications across various domains. ShapeAXI is available in our GitHub repository https://github.com/DCBIA-OrthoLab/ShapeAXI.

ShapeAXI:形状分析的可解释性和可解读性
ShapeAXI 是一种先进的形状分析框架,它利用多视角方法,从不同视角捕捉三维物体,然后通过二维卷积神经网络(CNN)对其进行分析。我们自动执行 N 倍交叉验证过程,并汇总所有倍的结果。这就确保了每个形状的每个类别都有深入的可解释性热图,提高了可解释性,有助于对潜在现象有更细致的了解。我们通过两个有针对性的分类实验展示了 ShapeAXI 的多功能性。第一个实验将髁状突分为健康和退化状态。第二项实验更为复杂,它处理从裂隙患者 CBCT 扫描中提取的形状,将其有效地分为四个严重程度等级。这一创新应用不仅与现有的医学研究相吻合,还为专门的裂隙患者分析开辟了新的途径,为科学探索和临床实践带来了巨大的希望。从 ShapeAXI 的可解释性图像中获得的丰富见解巩固了现有知识,并为髁突评估和裂隙患者严重程度分类领域的新发现提供了一个平台。作为一种多功能解释工具,ShapeAXI 在三维物体解释和分类方面树立了新的标杆,其开创性方法有望为各领域的研究和实际应用做出重大贡献。ShapeAXI 可在我们的 GitHub 存储库 https://github.com/DCBIA-OrthoLab/ShapeAXI 中下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信