Error analysis for local discontinuous Galerkin semidiscretization of Richards’ equation

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Scott Congreve, Vít Dolejší, Sunčica Sakić
{"title":"Error analysis for local discontinuous Galerkin semidiscretization of Richards’ equation","authors":"Scott Congreve, Vít Dolejší, Sunčica Sakić","doi":"10.1093/imanum/drae013","DOIUrl":null,"url":null,"abstract":"This paper concerns an error analysis of the space semidiscrete scheme for the Richards’ equation modeling flows in variably saturated porous media. This nonlinear parabolic partial differential equation can degenerate; namely, we consider the case where the time derivative term can vanish, i.e., the fast-diffusion type of degeneracy. We discretize the Richards’ equation by the local discontinuous Galerkin method, which provides high order accuracy and preserves stability. Due to the nonlinearity of the problem, special techniques for numerical analysis of the scheme are required. In particular, we combine two partial error bounds using continuous mathematical induction and derive a priori error estimates with respect to the spatial discretization parameter and the Hölder coefficient of the nonlinear temporal derivative. Finally, the theoretical results are supported by numerical experiments, including cases beyond the assumptions of the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"44 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns an error analysis of the space semidiscrete scheme for the Richards’ equation modeling flows in variably saturated porous media. This nonlinear parabolic partial differential equation can degenerate; namely, we consider the case where the time derivative term can vanish, i.e., the fast-diffusion type of degeneracy. We discretize the Richards’ equation by the local discontinuous Galerkin method, which provides high order accuracy and preserves stability. Due to the nonlinearity of the problem, special techniques for numerical analysis of the scheme are required. In particular, we combine two partial error bounds using continuous mathematical induction and derive a priori error estimates with respect to the spatial discretization parameter and the Hölder coefficient of the nonlinear temporal derivative. Finally, the theoretical results are supported by numerical experiments, including cases beyond the assumptions of the theoretical results.
理查兹方程局部不连续伽勒金半离散化的误差分析
本文涉及对模拟变饱和多孔介质中流动的理查兹方程的空间半离散方案进行误差分析。这种非线性抛物线偏微分方程可能发生退化,即我们考虑的是时间导数项可能消失的情况,也就是快速扩散类型的退化。我们采用局部不连续 Galerkin 方法对 Richards' 方程进行离散化处理,该方法具有高阶精度并能保持稳定性。由于问题的非线性,需要采用特殊技术对方案进行数值分析。特别是,我们利用连续数学归纳法将两个部分误差约束结合起来,得出了关于空间离散化参数和非线性时间导数的赫尔德系数的先验误差估计。最后,理论结果得到了数值实验的支持,包括理论结果假设之外的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信