{"title":"Data-driven Wasserstein distributionally robust dual-sourcing inventory model under uncertain demand","authors":"Yun Geon Kim, Byung Do Chung","doi":"10.1016/j.omega.2024.103112","DOIUrl":null,"url":null,"abstract":"<div><p>Dual-sourcing inventory management, which is aimed at replenishing inventory through two supply sources, has been extensively incorporated across various industries as it can mitigate supply chain related operational risks. Given the practical relevance of this framework, many dual-sourcing inventory models based on stochastic and robust optimization approaches have been developed. However, these approaches encounter challenges such as the curse of dimensionality or solution conservativeness. In this study, we developed a data-driven distributionally robust optimization model for dual-sourcing inventory management under uncertain demand conditions, in which partial information regarding the distribution of the uncertain demand is available. A tractable model was constructed to solve the problem, and an optimal solution was derived in a closed-form expression. Numerical experiments were conducted to evaluate the performance of the proposed model in comparison with benchmark models in terms of the order-, stock-, and rolling-horizon-related parameters and demand distributions. The results demonstrated the benefit of adopting the dual-sourcing strategy in inventory management based on the distributionally robust optimization approach. In addition, the proposed model outperformed the benchmark models in terms of mitigating the bullwhip effect.</p></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048324000781","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-sourcing inventory management, which is aimed at replenishing inventory through two supply sources, has been extensively incorporated across various industries as it can mitigate supply chain related operational risks. Given the practical relevance of this framework, many dual-sourcing inventory models based on stochastic and robust optimization approaches have been developed. However, these approaches encounter challenges such as the curse of dimensionality or solution conservativeness. In this study, we developed a data-driven distributionally robust optimization model for dual-sourcing inventory management under uncertain demand conditions, in which partial information regarding the distribution of the uncertain demand is available. A tractable model was constructed to solve the problem, and an optimal solution was derived in a closed-form expression. Numerical experiments were conducted to evaluate the performance of the proposed model in comparison with benchmark models in terms of the order-, stock-, and rolling-horizon-related parameters and demand distributions. The results demonstrated the benefit of adopting the dual-sourcing strategy in inventory management based on the distributionally robust optimization approach. In addition, the proposed model outperformed the benchmark models in terms of mitigating the bullwhip effect.
期刊介绍:
Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.