Baoling Zhu, Yi Yang, Xiangfei Wang, Dili Sun, Xiyang Yang, Xiaowei Zhu, Suling Ding, Chun Xiao, Yunzeng Zou, Xiangdong Yang
{"title":"Blocking H<sub>1</sub>R signal aggravates atherosclerosis by promoting inflammation and foam cell formation.","authors":"Baoling Zhu, Yi Yang, Xiangfei Wang, Dili Sun, Xiyang Yang, Xiaowei Zhu, Suling Ding, Chun Xiao, Yunzeng Zou, Xiangdong Yang","doi":"10.1007/s00109-024-02453-5","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis (AS) is a chronic inflammatory arterial disease, in which abnormal lipid metabolism and foam cell formation play key roles. Histamine is a vital biogenic amine catalyzed by histidine decarboxylase (HDC) from L-histidine. Histamine H1 receptor (H<sub>1</sub>R) antagonist is a commonly encountered anti-allergic agent in the clinic. However, the role and mechanism of H<sub>1</sub>R in atherosclerosis have not been fully elucidated. Here, we explored the effect of H<sub>1</sub>R on atherosclerosis using Apolipoprotein E-knockout (ApoE<sup>-/-</sup>) mice with astemizole (AST, a long-acting H<sub>1</sub>R antagonist) treatment. The results showed that AST increased atherosclerotic plaque area and hepatic lipid accumulation in mice. The result of microarray study identified a significant change of endothelial lipase (LIPG) in CD11b<sup>+</sup> myeloid cells derived from HDC-knockout (HDC<sup>-/-</sup>) mice compared to WT mice. Blocking H<sub>1</sub>R promoted the formation of foam cells from bone marrow-derived macrophages (BMDMs) of mice by up-regulating p38 mitogen-activated protein kinase (p38 MAPK) and LIPG signaling pathway. Taken together, these findings demonstrate that blocking H<sub>1</sub>R signal aggravates atherosclerosis by promoting abnormal lipid metabolism and macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway. KEY MESSAGES: Blocking H<sub>1</sub>R signal with AST aggravated atherosclerosis and increased hepatic lipid accumulation in high-fat diet (HFD)-fed ApoE<sup>-/-</sup> mice. Blocking H<sub>1</sub>R signal promoted macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-024-02453-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis (AS) is a chronic inflammatory arterial disease, in which abnormal lipid metabolism and foam cell formation play key roles. Histamine is a vital biogenic amine catalyzed by histidine decarboxylase (HDC) from L-histidine. Histamine H1 receptor (H1R) antagonist is a commonly encountered anti-allergic agent in the clinic. However, the role and mechanism of H1R in atherosclerosis have not been fully elucidated. Here, we explored the effect of H1R on atherosclerosis using Apolipoprotein E-knockout (ApoE-/-) mice with astemizole (AST, a long-acting H1R antagonist) treatment. The results showed that AST increased atherosclerotic plaque area and hepatic lipid accumulation in mice. The result of microarray study identified a significant change of endothelial lipase (LIPG) in CD11b+ myeloid cells derived from HDC-knockout (HDC-/-) mice compared to WT mice. Blocking H1R promoted the formation of foam cells from bone marrow-derived macrophages (BMDMs) of mice by up-regulating p38 mitogen-activated protein kinase (p38 MAPK) and LIPG signaling pathway. Taken together, these findings demonstrate that blocking H1R signal aggravates atherosclerosis by promoting abnormal lipid metabolism and macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway. KEY MESSAGES: Blocking H1R signal with AST aggravated atherosclerosis and increased hepatic lipid accumulation in high-fat diet (HFD)-fed ApoE-/- mice. Blocking H1R signal promoted macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.