{"title":"Well-posedness and stability of a fractional heat-conductor with fading memory","authors":"Sebti Kerbal, Nasser-eddine Tatar, Nasser Al-Salti","doi":"10.1007/s13540-024-00291-3","DOIUrl":null,"url":null,"abstract":"<p>We consider a problem which describes the heat diffusion in a complex media with fading memory. The model involves a fractional time derivative of order between zero and one instead of the classical first order derivative. The model takes into account also the effect of a neutral delay. We discuss the existence and uniqueness of a mild solution as well as a classical solution. Then, we prove a Mittag-Leffler stability result. Unlike the integer-order case, we run into considerable difficulties when estimating some problematic terms. It is found that even without the memory term in the heat flux expression, the stability is still of Mittag-Leffler type.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00291-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a problem which describes the heat diffusion in a complex media with fading memory. The model involves a fractional time derivative of order between zero and one instead of the classical first order derivative. The model takes into account also the effect of a neutral delay. We discuss the existence and uniqueness of a mild solution as well as a classical solution. Then, we prove a Mittag-Leffler stability result. Unlike the integer-order case, we run into considerable difficulties when estimating some problematic terms. It is found that even without the memory term in the heat flux expression, the stability is still of Mittag-Leffler type.