Nahal Sakhavand , Jay Rosenberger , Victoria C.P. Chen , Harsha Gangammanavar
{"title":"Design of experiments for the stochastic unit commitment with economic dispatch models","authors":"Nahal Sakhavand , Jay Rosenberger , Victoria C.P. Chen , Harsha Gangammanavar","doi":"10.1016/j.ejco.2024.100089","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a Design and Analysis of the Computer Experiments (DACE) approach to the stochastic unit commitment problem for power systems with significant renewable integration. For this purpose, we use a two-stage stochastic programming formulation of the stochastic unit commitment-economic dispatch problem. Typically, a sample average approximation of the true problem is solved using a cutting plane method (such as the L-shaped method) or scenario decomposition (such as Progressive Hedging) algorithms. However, when the number of scenarios increases, these solution methods become computationally prohibitive. To address this challenge, we develop a novel DACE approach that exploits the structure of the first-stage unit commitment decision space in a design of experiments, uses features based upon solar generation, and trains a multivariate adaptive regression splines model to approximate the second stage of the stochastic unit commitment-economic dispatch problem. We conduct experiments on two modified IEEE-57 and IEEE-118 test systems and assess the quality of the solutions obtained from both the DACE and the L-shaped methods in a replicated procedure. The results obtained from this approach attest to the significant improvement in the computational performance of the DACE approach over the traditional L-shaped method.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100089"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000066/pdfft?md5=734ce10eb038b678d854fede2426d31a&pid=1-s2.0-S2192440624000066-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440624000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a Design and Analysis of the Computer Experiments (DACE) approach to the stochastic unit commitment problem for power systems with significant renewable integration. For this purpose, we use a two-stage stochastic programming formulation of the stochastic unit commitment-economic dispatch problem. Typically, a sample average approximation of the true problem is solved using a cutting plane method (such as the L-shaped method) or scenario decomposition (such as Progressive Hedging) algorithms. However, when the number of scenarios increases, these solution methods become computationally prohibitive. To address this challenge, we develop a novel DACE approach that exploits the structure of the first-stage unit commitment decision space in a design of experiments, uses features based upon solar generation, and trains a multivariate adaptive regression splines model to approximate the second stage of the stochastic unit commitment-economic dispatch problem. We conduct experiments on two modified IEEE-57 and IEEE-118 test systems and assess the quality of the solutions obtained from both the DACE and the L-shaped methods in a replicated procedure. The results obtained from this approach attest to the significant improvement in the computational performance of the DACE approach over the traditional L-shaped method.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.