Circular Heterochiral Titanium-Based Self-Assembled Architectures

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pierre Mobian*, David-Jérôme Pham, Alain Chaumont, Laurent Barloy, Georges Khalil and Nathalie Kyritsakas, 
{"title":"Circular Heterochiral Titanium-Based Self-Assembled Architectures","authors":"Pierre Mobian*,&nbsp;David-Jérôme Pham,&nbsp;Alain Chaumont,&nbsp;Laurent Barloy,&nbsp;Georges Khalil and Nathalie Kyritsakas,&nbsp;","doi":"10.1021/jacs.4c02352","DOIUrl":null,"url":null,"abstract":"<p >Circular trinuclear helicates have been synthesized from a bis-biphenol strand (LH<sub>4</sub>), titanium isopropoxide, and various diimine ligands. These self-assembled architectures constructed around three TiO<sub>4</sub>N<sub>2</sub> nodes have a heterochiral structure (<i>C</i><sub>1</sub> symmetry) when 2,2′-bipyridine (A), 4,4′-dimethyl-2,2′-bipyridine (B), 4,4′-bromo-2,2′-bipyridine (C), or 4,4′-dimethyl-2,2′-bipyrimidine (D) is employed. Within these complexes, one nitrogen ligand is <i>endo</i>-positioned inside the metallo-macrocycle, whereas the other two diimine ligands point outside the helicate framework. This investigation highlights that the nitrogen ligand which does not participate in the helicate framework of the complex controls the overall symmetry of the helicate since the 2,2′-bipyrimidine chelate (F) ends in the formation of a homochiral aggregate (<i>C</i><sub>3</sub> symmetry). The lack of symmetry found in the solid state for the trinuclear species ([Ti<sub>3</sub>L<sub>3</sub>(B)<sub>3</sub>], [Ti<sub>3</sub>L<sub>3</sub>(C)<sub>3</sub>], and [Ti<sub>3</sub>L<sub>3</sub>(D)<sub>3</sub>]) is observed for these complexes in solution (dichloromethane or chloroform). Remarkably, the 2,2′-bipyrazine ligand (ligand E) ends in the formation of a hexameric aggregate formulated as [Ti<sub>6</sub>L<sub>6</sub>(E)<sub>6</sub>], whereas the use of 4,4′-dimethyl-2,2′-bipyrimidine (ligand D) permits to generate the dinuclear complexes ([Ti<sub>2</sub>L(D)<sub>2</sub>(O<sup><i>i</i></sup>Pr)<sub>4</sub>] and [Ti<sub>2</sub>L<sub>2</sub>(D)<sub>2</sub>]) in addition to the trimeric structure [Ti<sub>3</sub>L<sub>3</sub>(D)<sub>3</sub>]. The behavior of [Ti<sub>3</sub>L<sub>3</sub>(A)<sub>3</sub>] in solution, on the other hand, is unique since an equilibrium between the homochiral and the heterochiral form is reached within 17 days after the complex has been dissolved in dichloromethane (<i>C</i><sub>3</sub>-[Ti<sub>3</sub>L<sub>3</sub>(A)<sub>3</sub>]/<i>C</i><sub>1</sub>-[Ti<sub>3</sub>L<sub>3</sub>(A)<sub>3</sub>] ratio = 0.3). In chloroform, the heterochiral form of [Ti<sub>3</sub>L<sub>3</sub>(A)<sub>3</sub>] is stable for the same period of time, evidencing the dependence of this stereochemical transformation toward the solvent medium. The thermodynamic and kinetic parameters linked to this stereochemical equilibrium have been obtained and point to the fact that the transformation is intramolecular and not induced by the presence of external ligands. The thermodynamic constant of the <i>C</i><sub>1</sub>-[Ti<sub>3</sub>L<sub>3</sub>(A)<sub>3</sub>]/<i>C</i><sub>3</sub>-[Ti<sub>3</sub>L<sub>3</sub>(A)<sub>3</sub>] equilibrium is found to be <i>K</i> = 0.34 ± 10%. Further evidence to rationalize this solvent-induced symmetry switch is obtained via a DFT calculation and classical molecular dynamics. In particular, this computational investigation elucidates the reason why the stereochemical transformation of a heterochiral architecture into a homochiral structure is possible only for a trinuclear assembly containing ligand A.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 20","pages":"14067–14078"},"PeriodicalIF":15.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c02352","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Circular trinuclear helicates have been synthesized from a bis-biphenol strand (LH4), titanium isopropoxide, and various diimine ligands. These self-assembled architectures constructed around three TiO4N2 nodes have a heterochiral structure (C1 symmetry) when 2,2′-bipyridine (A), 4,4′-dimethyl-2,2′-bipyridine (B), 4,4′-bromo-2,2′-bipyridine (C), or 4,4′-dimethyl-2,2′-bipyrimidine (D) is employed. Within these complexes, one nitrogen ligand is endo-positioned inside the metallo-macrocycle, whereas the other two diimine ligands point outside the helicate framework. This investigation highlights that the nitrogen ligand which does not participate in the helicate framework of the complex controls the overall symmetry of the helicate since the 2,2′-bipyrimidine chelate (F) ends in the formation of a homochiral aggregate (C3 symmetry). The lack of symmetry found in the solid state for the trinuclear species ([Ti3L3(B)3], [Ti3L3(C)3], and [Ti3L3(D)3]) is observed for these complexes in solution (dichloromethane or chloroform). Remarkably, the 2,2′-bipyrazine ligand (ligand E) ends in the formation of a hexameric aggregate formulated as [Ti6L6(E)6], whereas the use of 4,4′-dimethyl-2,2′-bipyrimidine (ligand D) permits to generate the dinuclear complexes ([Ti2L(D)2(OiPr)4] and [Ti2L2(D)2]) in addition to the trimeric structure [Ti3L3(D)3]. The behavior of [Ti3L3(A)3] in solution, on the other hand, is unique since an equilibrium between the homochiral and the heterochiral form is reached within 17 days after the complex has been dissolved in dichloromethane (C3-[Ti3L3(A)3]/C1-[Ti3L3(A)3] ratio = 0.3). In chloroform, the heterochiral form of [Ti3L3(A)3] is stable for the same period of time, evidencing the dependence of this stereochemical transformation toward the solvent medium. The thermodynamic and kinetic parameters linked to this stereochemical equilibrium have been obtained and point to the fact that the transformation is intramolecular and not induced by the presence of external ligands. The thermodynamic constant of the C1-[Ti3L3(A)3]/C3-[Ti3L3(A)3] equilibrium is found to be K = 0.34 ± 10%. Further evidence to rationalize this solvent-induced symmetry switch is obtained via a DFT calculation and classical molecular dynamics. In particular, this computational investigation elucidates the reason why the stereochemical transformation of a heterochiral architecture into a homochiral structure is possible only for a trinuclear assembly containing ligand A.

Abstract Image

Abstract Image

环状杂手性钛基自组装体系结构
我们用双联苯酚链(LH4)、异丙醇钛和各种二亚胺配体合成了环状三核螺旋体。当 2,2′-联吡啶(A)时,这些围绕三个 TiO4N2 节点构建的自组装结构具有异手性结构(C1 对称性)、4,4′-二甲基-2,2′-联吡啶(B)、4,4′-溴-2,2′-联吡啶(C)或 4,4′-二甲基-2,2′-联嘧啶(D)时,它们具有异手性结构(C1 对称)。在这些配合物中,一个氮配体位于金属大环内,而另外两个二亚胺配体则位于螺旋框架外。这项研究表明,由于 2,2′-联嘧啶螯合物(F)最终形成了同手性聚合体(C3 对称性),因此不参与复合物螺旋框架的氮配体控制了螺旋的整体对称性。在固态中发现的三核物种([Ti3L3(B)3]、[Ti3L3(C)3]和[Ti3L3(D)3])缺乏对称性的现象在溶液(二氯甲烷或氯仿)中的这些配合物中也能观察到。值得注意的是,2,2′-联吡嗪配体(配体 E)最终形成的六聚体为[Ti6L6(E)6],而使用 4,4′-二甲基-2、2′-联嘧啶(配体 D)则可生成双核配合物([Ti2L(D)2(OiPr)4] 和 [Ti2L2(D)2])以及三聚体结构 [Ti3L3(D)3]。另一方面,[Ti3L3(A)3] 在溶液中的表现也很独特,因为该复合物溶解于二氯甲烷后 17 天内,同手性和异手性形式就达到了平衡(C3-[Ti3L3(A)3]/C1-[Ti3L3(A)3]之比 = 0.3)。在氯仿中,[Ti3L3(A)3] 的异手性形式在相同的时间内保持稳定,这证明了这种立体化学转化与溶剂介质有关。我们已经获得了与这种立体化学平衡相关的热力学和动力学参数,这些参数表明,这种转化是分子内的,而不是由外部配体的存在所诱导。发现 C1-[Ti3L3(A)3]/C3-[Ti3L3(A)3]平衡的热力学常数为 K = 0.34 ± 10%。通过 DFT 计算和经典分子动力学,进一步证明了这种溶剂诱导的对称性转换的合理性。特别是,这项计算研究阐明了为什么只有含有配体 A 的三核组装体才有可能实现异手性结构向同手性结构的立体化学转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信