Distance queries over dynamic interval graphs

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Jingbang Chen , Meng He , J. Ian Munro , Richard Peng , Kaiyu Wu , Daniel J. Zhang
{"title":"Distance queries over dynamic interval graphs","authors":"Jingbang Chen ,&nbsp;Meng He ,&nbsp;J. Ian Munro ,&nbsp;Richard Peng ,&nbsp;Kaiyu Wu ,&nbsp;Daniel J. Zhang","doi":"10.1016/j.comgeo.2024.102103","DOIUrl":null,"url":null,"abstract":"<div><p>We design the first dynamic distance oracles for interval graphs, which are intersection graphs of a set of intervals on the real line, and for proper interval graphs, which are intersection graphs of a set of intervals in which no interval is properly contained in another.</p><p>For proper interval graphs, we design a linear space data structure which supports distance queries (computing the distance between two query vertices) and vertex insertion or deletion in <span><math><mi>O</mi><mo>(</mo><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> worst-case time, where <em>n</em> is the number of vertices currently in <em>G</em>. Under incremental (insertion only) or decremental (deletion only) settings in general interval graphs, we design linear space data structures that support distance queries in <span><math><mi>O</mi><mo>(</mo><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> worst-case time and vertex insertion or deletion in <span><math><mi>O</mi><mo>(</mo><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> amortized time, where <em>n</em> is the maximum number of vertices in the graph. Under fully dynamic settings in general interval graphs, we design a data structure that represents an interval graph <em>G</em> in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> words of space to support distance queries in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span> worst-case time and vertex insertion or deletion in <span><math><mi>O</mi><mo>(</mo><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> worst-case time, where <em>n</em> is the number of vertices currently in <em>G</em> and <span><math><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is an arbitrary function that satisfies <span><math><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>Ω</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. This implies an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-word solution with <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>n</mi><mi>lg</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>-time support for both distance queries and updates. All four data structures can answer shortest path queries by reporting the vertices in the shortest path between two query vertices in <span><math><mi>O</mi><mo>(</mo><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> worst-case time per vertex.</p><p>We also study the hardness of supporting distance queries under updates over an intersection graph of 3D axis-aligned line segments, which generalizes our problem to 3D. Finally, we solve the problem of computing the diameter of a dynamic connected interval graph.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000257/pdfft?md5=ac15b97cfeb7f82df769c6ba4285f13b&pid=1-s2.0-S0925772124000257-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000257","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We design the first dynamic distance oracles for interval graphs, which are intersection graphs of a set of intervals on the real line, and for proper interval graphs, which are intersection graphs of a set of intervals in which no interval is properly contained in another.

For proper interval graphs, we design a linear space data structure which supports distance queries (computing the distance between two query vertices) and vertex insertion or deletion in O(lgn) worst-case time, where n is the number of vertices currently in G. Under incremental (insertion only) or decremental (deletion only) settings in general interval graphs, we design linear space data structures that support distance queries in O(lgn) worst-case time and vertex insertion or deletion in O(lgn) amortized time, where n is the maximum number of vertices in the graph. Under fully dynamic settings in general interval graphs, we design a data structure that represents an interval graph G in O(n) words of space to support distance queries in O(nlgn/S(n)) worst-case time and vertex insertion or deletion in O(S(n)+lgn) worst-case time, where n is the number of vertices currently in G and S(n) is an arbitrary function that satisfies S(n)=Ω(1) and S(n)=O(n). This implies an O(n)-word solution with O(nlgn)-time support for both distance queries and updates. All four data structures can answer shortest path queries by reporting the vertices in the shortest path between two query vertices in O(lgn) worst-case time per vertex.

We also study the hardness of supporting distance queries under updates over an intersection graph of 3D axis-aligned line segments, which generalizes our problem to 3D. Finally, we solve the problem of computing the diameter of a dynamic connected interval graph.

动态区间图上的距离查询
我们为区间图(实线上一组区间的交集图)和适当区间图(一组区间的交集图,其中没有任何区间适当地包含在另一个区间中)设计了第一个动态距离观测器。对于适当区间图,我们设计了一种线性空间数据结构,它支持在 O(lgn) 最坏情况时间内进行距离查询(计算两个查询顶点之间的距离)和顶点插入或删除,其中 n 是 G 中当前顶点的数量。在一般区间图的增量(仅插入)或减量(仅删除)设置下,我们设计的线性空间数据结构支持距离查询,最坏情况时间为 O(lgn),支持顶点插入或删除,摊销时间为 O(lgn),其中 n 是图中顶点的最大数量。在一般区间图的全动态设置下,我们设计了一种数据结构,它能在 O(n) 字的空间内表示一个区间图 G,在最坏情况下只需 O(nlgn/S(n)) 的时间即可支持距离查询,在最坏情况下只需 O(S(n)+lgn) 的时间即可支持顶点插入或删除,其中 n 是当前 G 中的顶点数,S(n) 是满足 S(n)=Ω(1) 和 S(n)=O(n) 的任意函数。这意味着一个 O(n)-word 的解决方案在距离查询和更新时都支持 O(nlgn)-time 的时间。我们还研究了在三维轴对齐线段的交点图上支持距离查询和更新的难易度,这将我们的问题推广到了三维。最后,我们解决了计算动态连接区间图直径的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信