Yuzhu Wang , Jun Wu , Bo Shui , Jian Yang , Wei Wei
{"title":"Particle dynamic behaviors in bubble curtain barriers blocking the diffusion of sediment","authors":"Yuzhu Wang , Jun Wu , Bo Shui , Jian Yang , Wei Wei","doi":"10.1016/j.euromechflu.2024.04.013","DOIUrl":null,"url":null,"abstract":"<div><p>Bubble curtains are linear multiphase plumes that are used in industry and engineering to reduce diffusive flows between two zones. The circulating shear flow generated by the bubble plume can effectively create a particle barrier in the water; thus, it is also widely used to suppress the diffusion of suspended particles during dredging operations. To clarify the interaction mechanism between the bubble curtain and suspended particles under pressure-driven flow, experimental studies and numerical simulations were conducted to investigate the particle dynamics in the flow field around the bubble curtain. In this study, we established a formal analogy between a bubble curtain and an air curtain and qualitatively identified four typical distribution zones of the particles in the flow field. Based on the quantitative measurements and theoretical considerations, the optimal operating conditions and the upper limit of effectiveness of the bubble curtain were determined. In addition, the blocking behavior and efficiency of bubble plumes on particles with different <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>U</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>F</mi><msub><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></msub></mrow></math></span>numbers and different particle properties were simulated via the computational fluid dynamics<img>discrete element method (CFD<img>DEM) numerical simulation method.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 214-226"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000657","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bubble curtains are linear multiphase plumes that are used in industry and engineering to reduce diffusive flows between two zones. The circulating shear flow generated by the bubble plume can effectively create a particle barrier in the water; thus, it is also widely used to suppress the diffusion of suspended particles during dredging operations. To clarify the interaction mechanism between the bubble curtain and suspended particles under pressure-driven flow, experimental studies and numerical simulations were conducted to investigate the particle dynamics in the flow field around the bubble curtain. In this study, we established a formal analogy between a bubble curtain and an air curtain and qualitatively identified four typical distribution zones of the particles in the flow field. Based on the quantitative measurements and theoretical considerations, the optimal operating conditions and the upper limit of effectiveness of the bubble curtain were determined. In addition, the blocking behavior and efficiency of bubble plumes on particles with different and numbers and different particle properties were simulated via the computational fluid dynamicsdiscrete element method (CFDDEM) numerical simulation method.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.