Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Communications Pub Date : 2024-08-12 Epub Date: 2024-05-08 DOI:10.1016/j.xplc.2024.100926
Man Yu, Yongjie Kuang, Chenyang Wang, Xuemei Wu, Shaofang Li, Dawei Zhang, Wenxian Sun, Xueping Zhou, Bin Ren, Huanbin Zhou
{"title":"Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants.","authors":"Man Yu, Yongjie Kuang, Chenyang Wang, Xuemei Wu, Shaofang Li, Dawei Zhang, Wenxian Sun, Xueping Zhou, Bin Ren, Huanbin Zhou","doi":"10.1016/j.xplc.2024.100926","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-mediated base editors have been widely used to correct defective alleles and create novel alleles by artificial evolution for the rapid genetic improvement of crops. The editing capabilities of base editors strictly rely on the performance of various nucleotide modification enzymes. Compared with the well-developed adenine base editors (ABEs), cytosine base editors (CBEs) and dual base editors suffer from unstable editing efficiency and patterns at different genomic loci in rice, significantly limiting their application. Here, we comprehensively examined the base editing activities of multiple evolved TadA8e variants in rice. We found that both TadA-CDd and TadA-E27R/N46L achieved more robust C-to-T editing than previously reported hyperactive hAID∗Δ, and TadA-CDd outperformed TadA-E27R/N46L. A C-to-G base editor (CGBE) engineered with TadA-CDd and OsUNG performed highly efficient C-to-G editing in rice compared with that of TadA-N46P. In addition, a dual base editor constructed with a single protein, TadDE, enabled simultaneous, highly efficient C-to-T and A-to-G editing in rice. Collectively, our results demonstrate that TadA8e derivatives improve both CBEs and dual base editors in rice, providing a powerful way to induce diverse nucleotide substitutions for plant genome editing.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369719/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.100926","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-mediated base editors have been widely used to correct defective alleles and create novel alleles by artificial evolution for the rapid genetic improvement of crops. The editing capabilities of base editors strictly rely on the performance of various nucleotide modification enzymes. Compared with the well-developed adenine base editors (ABEs), cytosine base editors (CBEs) and dual base editors suffer from unstable editing efficiency and patterns at different genomic loci in rice, significantly limiting their application. Here, we comprehensively examined the base editing activities of multiple evolved TadA8e variants in rice. We found that both TadA-CDd and TadA-E27R/N46L achieved more robust C-to-T editing than previously reported hyperactive hAID∗Δ, and TadA-CDd outperformed TadA-E27R/N46L. A C-to-G base editor (CGBE) engineered with TadA-CDd and OsUNG performed highly efficient C-to-G editing in rice compared with that of TadA-N46P. In addition, a dual base editor constructed with a single protein, TadDE, enabled simultaneous, highly efficient C-to-T and A-to-G editing in rice. Collectively, our results demonstrate that TadA8e derivatives improve both CBEs and dual base editors in rice, providing a powerful way to induce diverse nucleotide substitutions for plant genome editing.

由新型 TadA 变体介导的水稻碱基编辑中的多种核苷酸置换。
CRISPR 介导的碱基编辑器已被广泛用于纠正有缺陷的等位基因,并通过人工进化创造出新的等位基因,从而实现农作物的快速遗传改良。碱基编辑器的编辑能力严格依赖于各种核苷酸修饰酶的性能。与成熟的腺嘌呤碱基编辑器(ABE)相比,胞嘧啶碱基编辑器(CBE)和双碱基编辑器在水稻不同基因组位点的编辑效率和模式不稳定,大大限制了它们的应用。在这里,我们全面考察了水稻中多个进化的 TadA8e 变体在碱基编辑中的活性。我们发现,TadA-CDd和TadA-E27R/N46L都能实现比以前报道的超活性hAID*Δ更强大的C-to-T编辑,而TadA-CDd的表现优于TadA-E27R/N46L。此外,与 TadA-N46P 相比,用 TadA-CDd 和 OsUNG 在水稻中设计的 C-G 碱基编辑器(CGBE)能进行高效的 C-G 编辑。此外,用单个蛋白 TadDE 构建的双碱基编辑器也能在水稻中同时高效编辑 C 到 T 和 A 到 G。总之,我们的研究表明,TadA8e 衍生物改进了水稻中的 CBE 和双碱基编辑器,为诱导植物基因组编辑中的多种核苷酸替换提供了有力的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信