George Wu, Spencer Childress, Zhongkai Wang, Matt Roumaya, Colleen McLaughlin Stern, Chelsea Dickens, Jeremy Wildfire
{"title":"Good Statistical Monitoring: A Flexible Open-Source Tool to Detect Risks in Clinical Trials.","authors":"George Wu, Spencer Childress, Zhongkai Wang, Matt Roumaya, Colleen McLaughlin Stern, Chelsea Dickens, Jeremy Wildfire","doi":"10.1007/s43441-024-00651-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Risk-based quality management is a regulatory-recommended approach to manage risk in a clinical trial. A key element of this strategy is to conduct risk-based monitoring to detect potential risks to critical data and processes earlier. However, there are limited publicly available tools to perform the analytics required for this purpose. Good Statistical Monitoring is a new open-source solution developed to help address this need.</p><p><strong>Methods: </strong>A team of statisticians, data scientists, clinicians, data managers, clinical operations, regulatory, and quality compliance staff collaborated to design Good Statistical Monitoring, an R package, to flexibly and efficiently implement end-to-end analyses of key risks. The package currently supports the mapping of clinical trial data from a variety of formats, evaluation of 12 key risk indicators, interactive visualization of analysis results, and creation of standardized reports.</p><p><strong>Results: </strong>The Good Statistical Monitoring package is freely available on GitHub and empowers clinical study teams to proactively monitor key risks. It employs a modular workflow to perform risk assessments that can be customized by replacing any workflow component with a study-specific alternative. Results can be exported to other clinical systems or can be viewed as an interactive report to facilitate follow-up risk mitigation. Rigorous testing and qualification are performed as part of each release to ensure package quality.</p><p><strong>Conclusions: </strong>Good Statistical Monitoring is an open-source solution designed to enable clinical study teams to implement statistical monitoring of critical risks, as part of a comprehensive risk-based quality management strategy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43441-024-00651-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Risk-based quality management is a regulatory-recommended approach to manage risk in a clinical trial. A key element of this strategy is to conduct risk-based monitoring to detect potential risks to critical data and processes earlier. However, there are limited publicly available tools to perform the analytics required for this purpose. Good Statistical Monitoring is a new open-source solution developed to help address this need.
Methods: A team of statisticians, data scientists, clinicians, data managers, clinical operations, regulatory, and quality compliance staff collaborated to design Good Statistical Monitoring, an R package, to flexibly and efficiently implement end-to-end analyses of key risks. The package currently supports the mapping of clinical trial data from a variety of formats, evaluation of 12 key risk indicators, interactive visualization of analysis results, and creation of standardized reports.
Results: The Good Statistical Monitoring package is freely available on GitHub and empowers clinical study teams to proactively monitor key risks. It employs a modular workflow to perform risk assessments that can be customized by replacing any workflow component with a study-specific alternative. Results can be exported to other clinical systems or can be viewed as an interactive report to facilitate follow-up risk mitigation. Rigorous testing and qualification are performed as part of each release to ensure package quality.
Conclusions: Good Statistical Monitoring is an open-source solution designed to enable clinical study teams to implement statistical monitoring of critical risks, as part of a comprehensive risk-based quality management strategy.