Andria Mousa, Gina Cuomo-Dannenburg, Hayley A Thompson, R Matthew Chico, Khalid B Beshir, Colin J Sutherland, David Schellenberg, Roly Gosling, Michael Alifrangis, Emma Filtenborg Hocke, Helle Hansson, Ana Chopo-Pizarro, Wilfred F Mbacham, Innocent M Ali, Mike Chaponda, Cally Roper, Lucy C Okell
{"title":"Measuring protective efficacy and quantifying the impact of drug resistance: A novel malaria chemoprevention trial design and methodology.","authors":"Andria Mousa, Gina Cuomo-Dannenburg, Hayley A Thompson, R Matthew Chico, Khalid B Beshir, Colin J Sutherland, David Schellenberg, Roly Gosling, Michael Alifrangis, Emma Filtenborg Hocke, Helle Hansson, Ana Chopo-Pizarro, Wilfred F Mbacham, Innocent M Ali, Mike Chaponda, Cally Roper, Lucy C Okell","doi":"10.1371/journal.pmed.1004376","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings.</p><p><strong>Methods and findings: </strong>We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common.</p><p><strong>Conclusions: </strong>These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.</p>","PeriodicalId":49008,"journal":{"name":"PLoS Medicine","volume":"21 5","pages":"e1004376"},"PeriodicalIF":15.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pmed.1004376","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings.
Methods and findings: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common.
Conclusions: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.
期刊介绍:
PLOS Medicine is a prominent platform for discussing and researching global health challenges. The journal covers a wide range of topics, including biomedical, environmental, social, and political factors affecting health. It prioritizes articles that contribute to clinical practice, health policy, or a better understanding of pathophysiology, ultimately aiming to improve health outcomes across different settings.
The journal is unwavering in its commitment to uphold the highest ethical standards in medical publishing. This includes actively managing and disclosing any conflicts of interest related to reporting, reviewing, and publishing. PLOS Medicine promotes transparency in the entire review and publication process. The journal also encourages data sharing and encourages the reuse of published work. Additionally, authors retain copyright for their work, and the publication is made accessible through Open Access with no restrictions on availability and dissemination.
PLOS Medicine takes measures to avoid conflicts of interest associated with advertising drugs and medical devices or engaging in the exclusive sale of reprints.