Zahid Ali, Yasir Jamil, Hafeez Anwar, Raja Adil Sarfraz
{"title":"Classification of e-waste using machine learning-assisted laser-induced breakdown spectroscopy.","authors":"Zahid Ali, Yasir Jamil, Hafeez Anwar, Raja Adil Sarfraz","doi":"10.1177/0734242X241248730","DOIUrl":null,"url":null,"abstract":"<p><p>Waste management and the economy are intertwined in various ways. Adopting sustainable waste management techniques can contribute to economic growth and resource conservation. Artificial intelligence (AI)-based classification is very crucial for rapid and contactless classification of metals in electronic waste (e-waste) management. In the present research work, five types of aluminium alloys, because of their extensive use in structural, electrical and thermotechnical functions in the electronics industry, were taken. Laser-induced breakdown spectroscopy (LIBS), a spectral identifier technique, was employed in conjunction with machine learning (ML) classification models of AI. Principal component analysis (PCA), an unsupervised ML classifier, was found incapable to differentiate LIBS data of alloys. Supervised ML classifier was then trained (for 10-fold cross-validation) on randomly selected 80% and tested on 20% spectral data of each alloy to assess classification capacity of each. In most of the tested variants of K nearest neighbour (kNN) the resulting accuracy was lower than 30% but kNN ensembled with random subspace method showed improved accuracy up to 98%. This study revealed that an AI-based LIBS system can classify e-waste alloys rather effectively in a non-contactless mode and could potentially be connected with robotic systems, hence, minimizing manual labour.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"408-420"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241248730","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Waste management and the economy are intertwined in various ways. Adopting sustainable waste management techniques can contribute to economic growth and resource conservation. Artificial intelligence (AI)-based classification is very crucial for rapid and contactless classification of metals in electronic waste (e-waste) management. In the present research work, five types of aluminium alloys, because of their extensive use in structural, electrical and thermotechnical functions in the electronics industry, were taken. Laser-induced breakdown spectroscopy (LIBS), a spectral identifier technique, was employed in conjunction with machine learning (ML) classification models of AI. Principal component analysis (PCA), an unsupervised ML classifier, was found incapable to differentiate LIBS data of alloys. Supervised ML classifier was then trained (for 10-fold cross-validation) on randomly selected 80% and tested on 20% spectral data of each alloy to assess classification capacity of each. In most of the tested variants of K nearest neighbour (kNN) the resulting accuracy was lower than 30% but kNN ensembled with random subspace method showed improved accuracy up to 98%. This study revealed that an AI-based LIBS system can classify e-waste alloys rather effectively in a non-contactless mode and could potentially be connected with robotic systems, hence, minimizing manual labour.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.