Annalisa Contursi , Stefania Tacconelli , Sara Di Berardino , Alessandra De Michele , Paola Patrignani
{"title":"Platelets and extracellular vesicles in disease promotion via cellular cross-talk and eicosanoid biosynthesis","authors":"Annalisa Contursi , Stefania Tacconelli , Sara Di Berardino , Alessandra De Michele , Paola Patrignani","doi":"10.1016/j.prostaglandins.2024.106848","DOIUrl":null,"url":null,"abstract":"<div><p>New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A<sub>2</sub> (TXA<sub>2</sub>) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S109888232400042X/pdfft?md5=4e3e0cad97e751a2ff6bfb5f9a8809c7&pid=1-s2.0-S109888232400042X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109888232400042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A2 (TXA2) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.