{"title":"Non-confluence of fractional stochastic differential equations driven by Lévy process","authors":"Zhi Li, Tianquan Feng, Liping Xu","doi":"10.1007/s13540-024-00278-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate a class of stochastic Riemann-Liouville type fractional differential equations driven by Lévy noise. By using Itô formula for the considered equation, we attempt to explore the non-confluence property of solution for the considered equation under some appropriate conditions. Our approach is to construct some suitable Lyapunov functions which is novel in exploring the non-confluence property of differential equations.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"88 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00278-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate a class of stochastic Riemann-Liouville type fractional differential equations driven by Lévy noise. By using Itô formula for the considered equation, we attempt to explore the non-confluence property of solution for the considered equation under some appropriate conditions. Our approach is to construct some suitable Lyapunov functions which is novel in exploring the non-confluence property of differential equations.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.