Existence and regularity of mild solutions to backward problem for nonlinear fractional super-diffusion equations in Banach spaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xuan X. Xi, Yong Zhou, Mimi Hou
{"title":"Existence and regularity of mild solutions to backward problem for nonlinear fractional super-diffusion equations in Banach spaces","authors":"Xuan X. Xi, Yong Zhou, Mimi Hou","doi":"10.1007/s13540-024-00286-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a class of backward problems for nonlinear fractional super-diffusion equations in Banach spaces. We consider the time fractional derivative in the sense of Caputo type. First, we establish some results for the existence of the mild solutions. Moreover, we obtain regularity results of the first order and fractional derivatives of mild solutions. These conclusions are mainly based on fixed point theorems and properties of <span>\\(\\alpha \\)</span>-resolvent family as well as Mittag-Leffler functions. Finally, two applications are provided to illustrate the efficiency of our results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00286-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of backward problems for nonlinear fractional super-diffusion equations in Banach spaces. We consider the time fractional derivative in the sense of Caputo type. First, we establish some results for the existence of the mild solutions. Moreover, we obtain regularity results of the first order and fractional derivatives of mild solutions. These conclusions are mainly based on fixed point theorems and properties of \(\alpha \)-resolvent family as well as Mittag-Leffler functions. Finally, two applications are provided to illustrate the efficiency of our results.

巴拿赫空间中非线性分数超扩散方程后向问题温和解的存在性与正则性
本文研究了巴拿赫空间中一类非线性分数超扩散方程的后向问题。我们考虑的是 Caputo 型意义上的时间分数导数。首先,我们建立了一些温和解存在性的结果。此外,我们还获得了温和解的一阶和分数导数的正则性结果。这些结论主要基于定点定理和 \(α \)-溶剂族以及 Mittag-Leffler 函数的性质。最后,我们提供了两个应用来说明我们结果的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信