{"title":"Hopf’s lemma and radial symmetry for the Logarithmic Laplacian problem","authors":"Lihong Zhang, Xiaofeng Nie","doi":"10.1007/s13540-024-00285-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove Hopf’s lemma for the Logarithmic Laplacian. At first, we introduce the strong minimum principle. Then Hopf’s lemma for the Logarithmic Laplacian in the ball is proved. On this basis, Hopf’s lemma of the Logarithmic Laplacian is extended to any open set with the property of the interior ball. Finally, an example is given to explain Hopf’s lemma can be applied to the study of the symmetry of the positive solution of the nonlinear Logarithmic Laplacian problem by the moving plane method.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"56 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00285-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove Hopf’s lemma for the Logarithmic Laplacian. At first, we introduce the strong minimum principle. Then Hopf’s lemma for the Logarithmic Laplacian in the ball is proved. On this basis, Hopf’s lemma of the Logarithmic Laplacian is extended to any open set with the property of the interior ball. Finally, an example is given to explain Hopf’s lemma can be applied to the study of the symmetry of the positive solution of the nonlinear Logarithmic Laplacian problem by the moving plane method.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.