{"title":"Simultaneous measurement of thermal conductivity and emissivity of micro/nanomaterials","authors":"Jinyu Chen, Jie Tang, Jinhui Liu","doi":"10.1016/j.expthermflusci.2024.111229","DOIUrl":null,"url":null,"abstract":"<div><p>Although thermal conductivity of micro/nano scale material has been readily measured, the high specific surface area leads to non-negligible radiative heat transfer. Here, a method for simultaneous measurement of intrinsic thermal conductivity and emissivity of micro/nano materials was developed and verified. The physical model of this measurement principle consisted of two parallel platinum wires, which serve as both heaters and heat flux meters. Thermal conductivity and emissivity can be derived by comparing the changes in the average temperature rise of the heater and sensor platinum wires before and after attaching the test sample. The thermal conductivity and emissivity of an individual platinum wire were determined to 71.7 W/(m·K) and 0.14, which are consistent with the reference values. Subsequently, the thermal conductivity and emissivity of the polymer composite fiber were measured to be 1.45 W/(m·K), 0.73 and 1.87 W/(m·K), 0.8 at different composite filler concentrations. In principle, this method is applicable for accurately measuring the thermal transport properties of any micro/nano wires using appropriate sensors.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724000980","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although thermal conductivity of micro/nano scale material has been readily measured, the high specific surface area leads to non-negligible radiative heat transfer. Here, a method for simultaneous measurement of intrinsic thermal conductivity and emissivity of micro/nano materials was developed and verified. The physical model of this measurement principle consisted of two parallel platinum wires, which serve as both heaters and heat flux meters. Thermal conductivity and emissivity can be derived by comparing the changes in the average temperature rise of the heater and sensor platinum wires before and after attaching the test sample. The thermal conductivity and emissivity of an individual platinum wire were determined to 71.7 W/(m·K) and 0.14, which are consistent with the reference values. Subsequently, the thermal conductivity and emissivity of the polymer composite fiber were measured to be 1.45 W/(m·K), 0.73 and 1.87 W/(m·K), 0.8 at different composite filler concentrations. In principle, this method is applicable for accurately measuring the thermal transport properties of any micro/nano wires using appropriate sensors.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.