Lifting iso-dual algebraic geometry codes

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
María Chara, Ricardo Podestá, Luciane Quoos, Ricardo Toledano
{"title":"Lifting iso-dual algebraic geometry codes","authors":"María Chara, Ricardo Podestá, Luciane Quoos, Ricardo Toledano","doi":"10.1007/s10623-024-01412-y","DOIUrl":null,"url":null,"abstract":"<p>In this work we investigate the problem of producing iso-dual algebraic geometry (AG) codes over a finite field <span>\\(\\mathbb {F}_{q}\\)</span> with <i>q</i> elements. Given a finite separable extension <span>\\(\\mathcal {M}/\\mathcal {F}\\)</span> of function fields and an iso-dual AG-code <span>\\(\\mathcal {C}\\)</span> defined over <span>\\(\\mathcal {F}\\)</span>, we provide a general method to lift the code <span>\\(\\mathcal {C}\\)</span> to another iso-dual AG-code <span>\\(\\tilde{\\mathcal {C}}\\)</span> defined over <span>\\(\\mathcal {M}\\)</span> under some assumptions on the parity of the involved different exponents. We apply this method to lift iso-dual AG-codes over the rational function field to elementary abelian <i>p</i>-extensions, like the maximal function fields defined by the Hermitian, Suzuki, and one covered by the <i>GGS</i> function field. We also obtain long binary and ternary iso-dual AG-codes defined over cyclotomic extensions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01412-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we investigate the problem of producing iso-dual algebraic geometry (AG) codes over a finite field \(\mathbb {F}_{q}\) with q elements. Given a finite separable extension \(\mathcal {M}/\mathcal {F}\) of function fields and an iso-dual AG-code \(\mathcal {C}\) defined over \(\mathcal {F}\), we provide a general method to lift the code \(\mathcal {C}\) to another iso-dual AG-code \(\tilde{\mathcal {C}}\) defined over \(\mathcal {M}\) under some assumptions on the parity of the involved different exponents. We apply this method to lift iso-dual AG-codes over the rational function field to elementary abelian p-extensions, like the maximal function fields defined by the Hermitian, Suzuki, and one covered by the GGS function field. We also obtain long binary and ternary iso-dual AG-codes defined over cyclotomic extensions.

Abstract Image

提升等二代数几何代码
在这项工作中,我们研究了在具有 q 个元素的有限域 \(\mathbb {F}_{q}\) 上生成等双代数几何(AG)代码的问题。给定函数域的有限可分离扩展 \(\mathcal {M}/\mathcal {F}\) 和定义在 \(\mathcal {F}\) 上的等双 AG 代码 \(\mathcal {C}\)、我们提供了一种一般方法,在对所涉及的不同指数的奇偶性做一些假设的情况下,将代码 \(\mathcal {C}\) 提升到定义在 \(\mathcal {M}\) 上的另一个等双 AG 代码 \(\tilde/{mathcal {C}\) 。我们应用这种方法把有理函数域上的等双 AG 代码提升到基本无住民 p 扩展,比如由赫尔墨斯、铃木和一个由 GGS 函数域覆盖的最大函数域定义的等双 AG 代码。我们还获得了定义在环函扩展上的长二元和三元等双 AG 代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信