{"title":"Yoyo attack on 4-round Lai-Massey scheme with secret round functions","authors":"Le Dong, Danxun Zhang, Wenya Li, Wenling Wu","doi":"10.1007/s10623-024-01408-8","DOIUrl":null,"url":null,"abstract":"<p>In this study, we present the first yoyo attack to recover the secret round function of the 4-round Lai-Massey scheme with an affine orthomorphism. We first perform a yoyo attack on 3-round Lai-Massey scheme. However, the original method for constructing plaintext equations is not sufficiently effective. To solve this problem, we partition the ciphertext and plaintext spaces into <span>\\(2^{n}\\)</span> subsets, which provides a fresh perspective on our yoyo attack. From this perspective, our study presents two improvements. One is that we devise an improved yoyo game in which the established ciphertext pool significantly narrows the search of good pairs compared with random selection, and the inserted filter can eliminate all wrong pairs using simple XOR calculations. Consequently, the yoyo game is advantageous for reducing the complexity of seeking good pairs, and we can avoid the complexity involved in solving equations generated using wrong pairs. The other is that we present a valid method for solving equations, which helps to reduce the number of yoyos required to recover the first-round function. After removing the first round, the look-up tables of the remaining two round functions of the 3-round Lai-Massey scheme can be retrieved by selecting the inputs and accessing the outputs. On the basis of this attack, we mount a yoyo attack on the 4-round Lai-Massey scheme to recover the fourth-round function and then apply the above attack to the remaining three rounds. In general, the complete recovery of the 4-round Lai-Massey scheme requires time complexity O<span>\\((k_{1}2^{2n})\\)</span> and memory O<span>\\((2^{2n})\\)</span>, where <span>\\(n\\le k_{1}<2^{n}\\)</span>.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"31 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01408-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present the first yoyo attack to recover the secret round function of the 4-round Lai-Massey scheme with an affine orthomorphism. We first perform a yoyo attack on 3-round Lai-Massey scheme. However, the original method for constructing plaintext equations is not sufficiently effective. To solve this problem, we partition the ciphertext and plaintext spaces into \(2^{n}\) subsets, which provides a fresh perspective on our yoyo attack. From this perspective, our study presents two improvements. One is that we devise an improved yoyo game in which the established ciphertext pool significantly narrows the search of good pairs compared with random selection, and the inserted filter can eliminate all wrong pairs using simple XOR calculations. Consequently, the yoyo game is advantageous for reducing the complexity of seeking good pairs, and we can avoid the complexity involved in solving equations generated using wrong pairs. The other is that we present a valid method for solving equations, which helps to reduce the number of yoyos required to recover the first-round function. After removing the first round, the look-up tables of the remaining two round functions of the 3-round Lai-Massey scheme can be retrieved by selecting the inputs and accessing the outputs. On the basis of this attack, we mount a yoyo attack on the 4-round Lai-Massey scheme to recover the fourth-round function and then apply the above attack to the remaining three rounds. In general, the complete recovery of the 4-round Lai-Massey scheme requires time complexity O\((k_{1}2^{2n})\) and memory O\((2^{2n})\), where \(n\le k_{1}<2^{n}\).
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.