Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces

Pub Date : 2024-03-06 DOI:10.1134/s0081543823050061
Ryan Gibara, Nageswari Shanmugalingam
{"title":"Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces","authors":"Ryan Gibara, Nageswari Shanmugalingam","doi":"10.1134/s0081543823050061","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In this paper we fix <span>\\(1\\le p&lt;\\infty\\)</span> and consider <span>\\((\\Omega,d,\\mu)\\)</span> to be an unbounded, locally compact, non-complete metric measure space equipped with a doubling measure <span>\\(\\mu\\)</span> supporting a <span>\\(p\\)</span>-Poincaré inequality such that <span>\\(\\Omega\\)</span> is a uniform domain in its completion <span>\\(\\overline\\Omega\\)</span>. We realize the trace of functions in the Dirichlet–Sobolev space <span>\\(D^{1,p}(\\Omega)\\)</span> on the boundary <span>\\(\\partial\\Omega\\)</span> as functions in the homogeneous Besov space <span>\\(H\\kern-1pt B^\\alpha_{p,p}(\\partial\\Omega)\\)</span> for suitable <span>\\(\\alpha\\)</span>; here, <span>\\(\\partial\\Omega\\)</span> is equipped with a non-atomic Borel regular measure <span>\\(\\nu\\)</span>. We show that if <span>\\(\\nu\\)</span> satisfies a <span>\\(\\theta\\)</span>-codimensional condition with respect to <span>\\(\\mu\\)</span> for some <span>\\(0&lt;\\theta&lt;p\\)</span>, then there is a bounded linear trace operator <span>\\(T \\colon\\, D^{1,p}(\\Omega)\\to H\\kern-1pt B^{1-\\theta/p}(\\partial\\Omega)\\)</span> and a bounded linear extension operator <span>\\(E \\colon\\, H\\kern-1pt B^{1-\\theta/p}(\\partial\\Omega)\\to D^{1,p}(\\Omega)\\)</span> that is a right-inverse of <span>\\(T\\)</span>. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823050061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we fix \(1\le p<\infty\) and consider \((\Omega,d,\mu)\) to be an unbounded, locally compact, non-complete metric measure space equipped with a doubling measure \(\mu\) supporting a \(p\)-Poincaré inequality such that \(\Omega\) is a uniform domain in its completion \(\overline\Omega\). We realize the trace of functions in the Dirichlet–Sobolev space \(D^{1,p}(\Omega)\) on the boundary \(\partial\Omega\) as functions in the homogeneous Besov space \(H\kern-1pt B^\alpha_{p,p}(\partial\Omega)\) for suitable \(\alpha\); here, \(\partial\Omega\) is equipped with a non-atomic Borel regular measure \(\nu\). We show that if \(\nu\) satisfies a \(\theta\)-codimensional condition with respect to \(\mu\) for some \(0<\theta<p\), then there is a bounded linear trace operator \(T \colon\, D^{1,p}(\Omega)\to H\kern-1pt B^{1-\theta/p}(\partial\Omega)\) and a bounded linear extension operator \(E \colon\, H\kern-1pt B^{1-\theta/p}(\partial\Omega)\to D^{1,p}(\Omega)\) that is a right-inverse of \(T\).

分享
查看原文
公度量空间中无边界均匀域的同质索波列夫和贝索夫空间的踪迹和扩展定理
Abstract In this paper we fix\(1\le p<\infty\) and consider \((\Omega,d,\mu)\) to be an unbounded, locally compact, non-complete metric measure space equipped with a doubling measure \(\mu\) supporting a \(p\)-Poincaré inequality such that \(\Omega\) is a uniform domain in its completion \(\overline\Omega\).我们将边界 \(\partial\Omega\) 上的 Dirichlet-Sobolev 空间 \(D^{1,p}(\Omega)\) 中的函数的迹作为同质 Besov 空间 \(H\kern-1pt B^\alpha_{p,p}(\partial\Omega)\) 中的函数来实现,对于合适的 \(\alpha\);这里,\(\partial\Omega\) 配备了一个非原子的波尔正则量度\(\nu\)。我们证明,如果\(\nu\)满足一个关于\(\mu\)的\(\theta\)-codimensional条件,对于某个\(0<\theta<;p),那么存在一个有界线性迹算子(T \colon\, D^{1,p}(\Omega)\to H\kern-1pt B^{1-\theta/p}(\partial\Omega)\) 和一个有界线性扩展算子(E \colon\、H\kern-1pt B^{1-\theta/p}(\partial\Omega)\to D^{1,p}(\Omega)\) 是 \(T\)的右逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信