Negative Probability

Nick Polson, Vadim Sokolov
{"title":"Negative Probability","authors":"Nick Polson, Vadim Sokolov","doi":"arxiv-2405.03043","DOIUrl":null,"url":null,"abstract":"Negative probabilities arise primarily in quantum theory and computing.\nBartlett provides a definition based on characteristic functions and\nextraordinary random variables. As Bartlett observes, negative probabilities\nmust always be combined with positive probabilities to yield a valid\nprobability distribution before any physical interpretation is admissible.\nNegative probabilities arise as mixing distributions of unobserved latent\nvariables in Bayesian modeling. Our goal is to provide a link with dual\ndensities and the class of scale mixtures of normal distributions. We provide\nan analysis of the classic half coin distribution and Feynman's negative\nprobability examples. A number of examples of dual densities with negative\nmixing measures including the linnik distribution, Wigner distribution and the\nstable distribution are provided. Finally, we conclude with directions for\nfuture research.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"177 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Negative probabilities arise primarily in quantum theory and computing. Bartlett provides a definition based on characteristic functions and extraordinary random variables. As Bartlett observes, negative probabilities must always be combined with positive probabilities to yield a valid probability distribution before any physical interpretation is admissible. Negative probabilities arise as mixing distributions of unobserved latent variables in Bayesian modeling. Our goal is to provide a link with dual densities and the class of scale mixtures of normal distributions. We provide an analysis of the classic half coin distribution and Feynman's negative probability examples. A number of examples of dual densities with negative mixing measures including the linnik distribution, Wigner distribution and the stable distribution are provided. Finally, we conclude with directions for future research.
负概率
巴特利特根据特征函数和超常随机变量给出了一个定义。正如巴特利特所观察到的,负概率必须总是与正概率相结合,才能产生有效的概率分布,然后才能进行任何物理解释。负概率作为贝叶斯建模中未观察到的潜在变量的混合分布而出现。我们的目标是提供一种与对偶性和正态分布规模混合物类的联系。我们分析了经典的半硬币分布和费曼的负概率例子。我们还提供了一些具有负混合度量的对偶密度实例,包括林尼克分布、维格纳分布和稳定分布。最后,我们总结了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信