{"title":"Confidentiality of Machine Learning Models","authors":"M. A. Poltavtseva, E. A. Rudnitskaya","doi":"10.3103/S0146411623080242","DOIUrl":null,"url":null,"abstract":"<p>This article is about ensuring the confidentiality of models using machine learning systems. The aim of this study is to ensure the confidentiality of models when using machine learning systems. This study analyzes attacks aimed at violating the confidentiality of these models and methods of protection from this type of attack, as a result of which the task of protecting against this type of attack is formulated as a search for anomalies in the input data. A method is proposed for detecting abnormalities in the input data based on the statistical data, taking into consideration the resumption of the attack by the intruder under a different account. The results obtained can be used as a base for designing components of machine learning security systems.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 8","pages":"975 - 982"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623080242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article is about ensuring the confidentiality of models using machine learning systems. The aim of this study is to ensure the confidentiality of models when using machine learning systems. This study analyzes attacks aimed at violating the confidentiality of these models and methods of protection from this type of attack, as a result of which the task of protecting against this type of attack is formulated as a search for anomalies in the input data. A method is proposed for detecting abnormalities in the input data based on the statistical data, taking into consideration the resumption of the attack by the intruder under a different account. The results obtained can be used as a base for designing components of machine learning security systems.
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision