Almost Intersecting Families for Vector Spaces

Pub Date : 2024-05-07 DOI:10.1007/s00373-024-02790-9
Yunjing Shan, Junling Zhou
{"title":"Almost Intersecting Families for Vector Spaces","authors":"Yunjing Shan, Junling Zhou","doi":"10.1007/s00373-024-02790-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>V</i> be an <i>n</i>-dimensional vector space over the finite field <span>\\({\\mathbb {F}}_{q}\\)</span> and let <span>\\(\\left[ \\begin{array}{c} V \\\\ k \\end{array}\\right] _q\\)</span> denote the family of all <i>k</i>-dimensional subspaces of <i>V</i>. A family <span>\\({{\\mathcal {F}}}\\subseteq \\left[ \\begin{array}{c} V \\\\ k \\end{array}\\right] _q\\)</span> is called intersecting if for all <i>F</i>, <span>\\(F'\\in {{\\mathcal {F}}},\\)</span> we have <span>\\({\\textrm{dim}}(F\\cap F')\\ge 1.\\)</span> A family <span>\\({{\\mathcal {F}}}\\subseteq \\left[ \\begin{array}{c} V \\\\ k \\end{array}\\right] _q\\)</span> is called almost intersecting if for every <span>\\(F\\in {{\\mathcal {F}}}\\)</span> there is at most one element <span>\\(F'\\in {{\\mathcal {F}}}\\)</span> satisfying <span>\\({\\textrm{dim}}(F\\cap F')=0.\\)</span> In this paper we investigate almost intersecting families in the vector space <i>V</i>. Firstly, for large <i>n</i>, we determine the maximum size of an almost intersecting family in <span>\\(\\left[ \\begin{array}{c} V \\\\ k \\end{array}\\right] _q,\\)</span> which is the same as that of an intersecting family. Secondly, we characterize the structures of all maximum almost intersecting families under the condition that they are not intersecting.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02790-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let V be an n-dimensional vector space over the finite field \({\mathbb {F}}_{q}\) and let \(\left[ \begin{array}{c} V \\ k \end{array}\right] _q\) denote the family of all k-dimensional subspaces of V. A family \({{\mathcal {F}}}\subseteq \left[ \begin{array}{c} V \\ k \end{array}\right] _q\) is called intersecting if for all F, \(F'\in {{\mathcal {F}}},\) we have \({\textrm{dim}}(F\cap F')\ge 1.\) A family \({{\mathcal {F}}}\subseteq \left[ \begin{array}{c} V \\ k \end{array}\right] _q\) is called almost intersecting if for every \(F\in {{\mathcal {F}}}\) there is at most one element \(F'\in {{\mathcal {F}}}\) satisfying \({\textrm{dim}}(F\cap F')=0.\) In this paper we investigate almost intersecting families in the vector space V. Firstly, for large n, we determine the maximum size of an almost intersecting family in \(\left[ \begin{array}{c} V \\ k \end{array}\right] _q,\) which is the same as that of an intersecting family. Secondly, we characterize the structures of all maximum almost intersecting families under the condition that they are not intersecting.

分享
查看原文
向量空间的几乎相交族
让 V 是有限域 \({\mathbb {F}}_{q}\) 上的 n 维向量空间,让 \(\left[ \begin{array}{c} V \ k \end{array}\right] _q\) 表示 V 的所有 k 维子空间的族。如果对于所有的 F, (F'\in {{\mathcal {F}}, \)我们有 ({\textrm{dim}}(F\cap F')\ge 1.\) ,那么这个族 ({{\mathcal {F}}} (subseteq \left[ \begin{array}{c} V \k \end{array}\right] _q\)就叫做相交族。)一个族({{\mathcal {F}}} subseteq \left[ \begin{array}{c} V \k \end{array}\right] _q\ )被称为几乎相交,如果对于({textrm{dim}}(Fcap F')=0.\)首先,对于大 n,我们确定了 \(\left[ \begin{array}{c} V \ k \end{array}\right] _q,\)中几乎相交族的最大大小,它与相交族的最大大小相同。其次,我们在不相交的条件下描述了所有最大几乎相交族的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信